首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NIPP1 is a ubiquitously expressed nuclear protein that functions both as a regulator of protein Ser/Thr phosphatase-1 and as a splicing factor. The N-terminal part of NIPP1 consists of a phosphothreonine-interacting Forkhead-associated (FHA) domain. We show here that the FHA domain of NIPP1 interacts in vitro and in vivo with a TP dipeptide-rich fragment of the splicing factor SAP155/SF3b(155), a component of the U2 small nuclear ribonucleoprotein particle. The NIPP1-SAP155 interaction was entirely dependent on the phosphorylation of specific TP motifs in SAP155. Mutagenesis and competition studies revealed that various phosphorylated TP motifs competed for binding to the same site in the FHA domain. The SAP155 kinases in cell lysates were blocked by the Ca(2+) chelator EGTA and by the cyclin-dependent protein kinase inhibitor roscovitine. The phosphorylation level of SAP155 was dramatically increased during mitosis, and accordingly the activity of SAP155 kinases was augmented in mitotic lysates. We discuss how the interaction between NIPP1 and SAP155 could contribute to spliceosome (dis)assembly and the catalytic steps of splicing.  相似文献   

2.
3.
4.
MELK is a cell cycle-regulated protein kinase involved in cell cycle progression, proliferation, tumor growth and mRNA splicing. MELK is localized in the cytoplasm and the nucleus during interphase and at the cell cortex during anaphase and telophase. In this report, we show that the regulatory domain of Xenopus MELK when tagged at its C-terminus with the green fluorescent protein (GFP), co-localizes with mitochondria in Xenopus XL2 cells. Significantly, the presence of a mitochondrial targeting signal at the N-terminus of this fusion protein was predicted by bioinformatics analyses. In agreement with previous reports on mitochondrial proteins, placing the GFP at the N-terminus inhibited the mitochondrial targeting of the MELK fragment and, furthermore, the regulatory domain without a tag co-localizes with mitochondria. These results demonstrate the presence of a mitochondrial targeting signal at the N-terminus of the MC domain of MELK. This mitochondrial targeting signal was also functional in human HeLa cells.  相似文献   

5.
NIPP1 is a ubiquitous regulator of protein phosphatase-1 (PP1) and is targeted to the splicing factor storage sites (speckles) in the nucleus by its forkhead-associated domain. We show here that NIPP1 is also a component of the spliceosomes in HeLa cell-splicing extracts and that the interaction with the spliceosomes requires a functional forkhead-associated domain. The in vitro splicing of beta-globin pre-mRNA was not affected by exogenous wild type NIPP1 but was blocked by mutants that lacked residues 225-329. The inhibition by these dominant negative mutants resulted from a block in a late phase of spliceosome assembly, i.e. at the transition between the B-complex and the C-complex. Site-directed mutagenesis furthermore showed that this spliceosomal function of NIPP1 was unrelated to its ability to bind PP1 or RNA. Our data suggest that NIPP1 can function independently as a splicing factor and a phosphatase regulator.  相似文献   

6.
Pre-mRNA splicing entails reversible phosphorylation of spliceosomal proteins. Recent work has revealed essential roles for Ser/Thr phosphatases, such as protein phosphatase-1 (PP1), in splicing, but how these phosphatases are regulated is largely unknown. We show that nuclear inhibitor of PP1 (NIPP1), a major PP1 interactor in the vertebrate nucleus, recruits PP1 to Sap155 (spliceosome-associated protein 155), an essential component of U2 small nuclear ribonucleoprotein particles, and promotes Sap155 dephosphorylation. C-terminally truncated NIPP1 (NIPP1-DeltaC) formed a hyper-active holoenzyme with PP1, rendering PP1 minimally phosphorylated on an inhibitory site. Forced expression of NIPP1-WT and -DeltaC resulted in slight and severe decreases in Sap155 hyperphosphorylation, respectively, and the latter was accompanied with inhibition of splicing. PP1 overexpression produced similar effects, whereas small interfering RNA-mediated NIPP1 knockdown enhanced Sap155 hyperphosphorylation upon okadaic acid treatment. NIPP1 did not inhibit but rather stimulated Sap155 dephosphorylation by PP1 in vitro through facilitating Sap155/PP1 interaction. Further analysis revealed that NIPP1 specifically recognizes hyperphosphorylated Sap155 thorough its Forkhead-associated domain and dissociates from Sap155 after dephosphorylation by associated PP1. Thus NIPP1 works as a molecular sensor for PP1 to recognize phosphorylated Sap155.  相似文献   

7.
NIPP1 is a regulatory subunit of a species of protein phosphatase-1 (PP1) that co-localizes with splicing factors in nuclear speckles. We report that the N-terminal third of NIPP1 largely consists of a Forkhead-associated (FHA) protein interaction domain, a known phosphopeptide interaction module. A yeast two-hybrid screening revealed an interaction between this domain and a human homolog (CDC5L) of the fission yeast protein cdc5, which is required for G(2)/M progression and pre-mRNA splicing. CDC5L and NIPP1 co-localized in nuclear speckles in COS-1 cells. Furthermore, an interaction between CDC5L, NIPP1, and PP1 in rat liver nuclear extracts could be demonstrated by co-immunoprecipitation and/or co-purification experiments. The binding of the FHA domain of NIPP1 to CDC5L was dependent on the phosphorylation of CDC5L, e.g. by cyclin E-Cdk2. When expressed in COS-1 or HeLa cells, the FHA domain of NIPP1 did not affect the number of cells in the G(2)/M transition. However, the FHA domain blocked beta-globin pre-mRNA splicing in nuclear extracts. A mutation in the FHA domain that abolished its interaction with CDC5L also canceled its anti-splicing effects. We suggest that NIPP1 either targets CDC5L or an associated protein for dephosphorylation by PP1 or serves as an anchor for both PP1 and CDC5L.  相似文献   

8.
The role of nuclear matrix proteins in premessenger RNA splicing has been investigated using antibodies raised against isolated rat liver nuclear matrix and cross-reactive with a 65-kDa HeLa cell nuclear matrix protein (IGA-65). IGA-65 is an internal nuclear matrix component which can be solubilized as a component of nuclear splicing extracts, by the action of endogenous ribonucleases, EDTA, and DTT during extract preparation. Preincubation of splicing extract with antibodies against IGA-65 (anti-IGA-65) inhibited in vitro splicing of exogenous adenovirus precursor RNA. Furthermore, assembly of precursor RNA into active spliceosome complexes was inhibited by pretreatment of extracts with anti-IGA-65, suggesting a role for IGA-65 during early spliceosome assembly. The IGA-65 present in splicing extracts was distinguishable from known U-snRNP and hnRNP proteins on protein gels. Furthermore, electrophoresis of splicing extract on native gels indicated that IGA-65 was present in protein complexes different from those containing U-snRNPs or hnRNP C protein. The data support identification of complexes containing IGA-65 as nuclear factors involved in pre-mRNA splicing and, by extension, suggest a role for the nuclear matrix during processing in vivo.  相似文献   

9.
Maternal embryonic leucine zipper kinase (MELK) is a protein Ser/Thr kinase that has been implicated in stem cell renewal, cell cycle progression, and pre-mRNA splicing, but its substrates and regulation are not yet known. We show here that MELK has a rather broad substrate specificity and does not appear to require a specific sequence surrounding its (auto)phosphorylation sites. We have mapped no less than 16 autophosphorylation sites including serines, threonines, and a tyrosine residue and show that the phosphorylation of Thr167 and Ser171 is required for the activation of MELK. The expression of MELK activity also requires reducing agents such as dithiothreitol or reduced glutathione. Furthermore, we show that MELK is a Ca2+-binding protein and is inhibited by physiological Ca2+ concentrations. The smallest MELK fragment that was still catalytically active comprises the N-terminal catalytic domain and the flanking ubiquitin-associated domain. A C-terminal fragment of MELK functions as an autoinhibitory domain. Our data show that the activity of MELK is regulated in a complex manner and offer new perspectives for the further elucidation of its biological function.  相似文献   

10.
Cervical cancer is a common gynecologic cancer and a frequent cause of death. In this study, we investigated the role of MELK (maternal embryonic leucine zipper kinase) in cervical cancer. We found that HPV 18 E6/E7 promoted MELK expression by activating E2F1. MELK knockdown blocked cancer cells growth. Furthermore, we used MELK-8A to inhibit the kinase activity of MELK and caused the G2/M phase arrest of cancer cells. Under the treatment of inhibitors, Hela cells formed multipolar spindles and eventually underwent apoptosis. We also found that MELK is involved in protein translation and folding during cell division through the MELK interactome and the temporal proteomic analysis under inhibition with MELK-8A. Altogether, these results suggest that MELK may play a vital role in cancer cell proliferation and indicate a potential therapeutic target for cervical cancer.  相似文献   

11.
SRPK1 and LBR protein kinases show identical substrate specificities   总被引:3,自引:0,他引:3  
Arginine/serine protein kinases constitute a novel class of enzymes that can modify arginine/serine (RS) dipeptide motifs. SR splicing factors that are essential for pre-mRNA splicing and the lamin B receptor (LBR), an integral protein of the inner nuclear membrane, are among the best characterized proteins that contain RS domains. Two SR Protein-specific Kinases, SRPK1 and SRPK2, have been shown to phosphorylate specifically the RS motifs of the SR family of splicing factors and play an important role in regulating both the spliceosome assembly and their intranuclear distribution, whereas an LBR-associated kinase, that specifically phosphorylates a stretch of RS repeats located at the NH2-terminal region of LBR, has been recently purified and characterized from turkey erythrocyte nuclear envelopes. Using synthetic peptides representing different regions of LBR and recombinant proteins produced in bacteria we now demonstrate that SRPK1 modifies LBR with similar kinetics and on the same sites as the LBR kinase, that are also phosphorylated in vivo. These data provide significant evidence for a new role of SRPK1 in addition to that of pre-mRNA splicing.  相似文献   

12.
J E Mermoud  P T Cohen    A I Lamond 《The EMBO journal》1994,13(23):5679-5688
Splicing of mRNA precursors (pre-mRNA) is preceded by assembly of the pre-mRNA with small nuclear ribonucleoprotein particles (snRNPs) and protein factors to form a splicesome. Here we show that stimulating Ser/Thr-specific protein dephosphorylation selectively inhibits an early step during mammalian spliceosome assembly. Treatment of HeLa nuclear splicing extracts with human protein phosphatase 1 (PP1) expressed in Escherichia coli, or PP1 purified from rabbit skeletal muscle, prevents pre-spliceosome E complex (early complex) formation and stable binding of U2 and U4/U6.U5 snRNPs to the pre-mRNA. PP1 does not inhibit splicing catalysis if added after spliceosome assembly has taken place. Addition of purified SR protein splicing factors restores spliceosome formation and splicing to PP1-inhibited extracts, consistent with SR proteins being targets regulated by phosphorylation. These data extend earlier observations showing that splicing catalysis, but not spliceosome assembly, is blocked by inhibiting protein phosphatases. It therefore appears that pre-mRNA splicing, in common with other biological processes, can be regulated both positively and negatively by reversible protein phosphorylation.  相似文献   

13.
The yeast PRP8 protein interacts directly with pre-mRNA.   总被引:14,自引:3,他引:11       下载免费PDF全文
The PRP8 protein of Saccharomyces cerevisiae is required for nuclear pre-mRNA splicing. Previously, immunological procedures demonstrated that PRP8 is a protein component of the U5 small nuclear ribonucleoprotein particle (U5 snRNP), and that PRP8 protein maintains a stable association with the spliceosome during both step 1 and step 2 of the splicing reaction. We have combined immunological analysis with a UV-crosslinking assay to investigate interaction(s) of PRP8 protein with pre-mRNA. We show that PRP8 protein interacts directly with splicing substrate RNA during in vitro splicing reactions. This contact event is splicing-specific in that it is ATP-dependent, and does not occur with mutant RNAs that contain 5' splice site or branchpoint mutations. The use of truncated RNA substrates demonstrated that the assembly of PRP8 protein into splicing complexes is not, by itself, sufficient for the direct interaction with the RNA; PRP8 protein only becomes UV-crosslinked to RNA substrates capable of participating in step 1 of the splicing reaction. We propose that PRP8 protein may play an important structural and/or regulatory role in the spliceosome.  相似文献   

14.
Pre-mRNA splicing takes place within a dynamic ribonucleoprotein particle called the spliceosome and occurs in an ordered pathway. Although it is known that spliceosome consists of five small nuclear RNAs and at least 50 proteins, little is known about how the interaction among the proteins changes during splicing. Here we identify that SR-cyp, a Moca family of nuclear cyclophilin, interacts and colocalizes with nuclear pinin (pnn), a SR-related protein involving in pre-mRNA splicing. Nuclear pnn interacts with SR-cyp via its C-terminal RS domain. Upon SR-cyp over-expression, however, the subnuclear distribution of nuclear pnn is altered, resulting in its redistribution from nuclear speckles to a diffuse nucleoplasmic form. The diffuse subnuclear distribution of nuclear pnn is not due to epitope masking, accelerated protein turnover or post-translational modification. Furthermore, we find that SR-cyp regulates the subnuclear distribution of other SR family proteins, including SC35 and SRm300, in a similar manner as it does on nuclear pnn. This result is significant because it suggests that SR-cyp plays a general role in modulating the distribution pattern of SR-like and SR proteins, similar to that of Clk (cdc2-like kinase)/STY on SR family splicing factors. SR-cyp might direct its effect via either alteration of protein folding/conformation or of protein-protein interaction and thus may add another control level of regulation of SR family proteins and modification of their functions.  相似文献   

15.
Human factor C1 (HCF-1) is needed for the expression of herpes simplex virus 1 (HSV-1) immediate-early genes in infected mammalian cells. Here, we provide evidence that HCF-1 is required for spliceosome assembly and splicing in mammalian nuclear extracts. HCF-1 interacts with complexes containing splicing snRNPs in uninfected mammalian cells and is a stable component of the spliceosome complex. We show that a missense mutation in HCF-1 in the BHK21 hamster cell line tsBN67, at the non-permissive temperature, inhibits the protein's interaction with U1 and U5 splicing snRNPs, causes inefficient spliceosome assembly and inhibits splicing. Transient expression of wild-type HCF-1 in tsBN67 cells restores splicing at the non-permissive temperature. The inhibition of splicing in tsBN67 cells correlates with the temperature-sensitive cell cycle arrest phenotype, suggesting that HCF-1-dependent splicing events may be required for cell cycle progression.  相似文献   

16.
We used the yeast interaction trap system to identify a novel human 70-kDa protein, termed NS1-binding protein (NS1-BP), which interacts with the nonstructural NS1 protein of the influenza A virus. The genetic interaction was confirmed by the specific coprecipitation of the NS1 protein from solution by a glutathione S-transferase–NS1-BP fusion protein and glutathione-Sepharose. NS1-BP contains an N-terminal BTB/POZ domain and five kelch-like tandem repeat elements of ~50 amino acids. In noninfected cells, affinity-purified antibodies localized NS1-BP in nuclear regions enriched with the spliceosome assembly factor SC35, suggesting an association of NS1-BP with the cellular splicing apparatus. In influenza A virus-infected cells, NS1-BP relocalized throughout the nucleoplasm and appeared distinct from the SC35 domains, which suggests that NS1-BP function may be disturbed or altered. The addition of a truncated NS1-BP mutant protein to a HeLa cell nuclear extract efficiently inhibited pre-mRNA splicing but not spliceosome assembly. This result could be explained by a possible dominant-negative effect of the NS1-BP mutant protein and suggests a role of the wild-type NS1-BP in promoting pre-mRNA splicing. These data suggest that the inhibition of splicing by the NS1 protein may be mediated by binding to NS1-BP.  相似文献   

17.
Glioblastoma multiforme (GBM) is a highly lethal brain tumor. Due to resistance to current therapies, patient prognosis remains poor and development of novel and effective GBM therapy is crucial. Glioma stem cells (GSCs) have gained attention as a therapeutic target in GBM due to their relative resistance to current therapies and potent tumor-initiating ability. Previously, we identified that the mitotic kinase maternal embryonic leucine-zipper kinase (MELK) is highly expressed in GBM tissues, specifically in GSCs, and its expression is inversely correlated with the post-surgical survival period of GBM patients. In addition, patient-derived GSCs depend on MELK for their survival and growth both in vitro and in vivo. Here, we demonstrate evidence that the role of MELK in the GSC survival is specifically dependent on its kinase activity. With in silico structure-based analysis for protein-compound interaction, we identified the small molecule Compound 1 (C1) is predicted to bind to the kinase-active site of MELK protein. Elimination of MELK kinase activity was confirmed by in vitro kinase assay in nano-molar concentrations. When patient-derived GSCs were treated with C1, they underwent mitotic arrest and subsequent cellular apoptosis in vitro, a phenotype identical to that observed with shRNA-mediated MELK knockdown. In addition, C1 treatment strongly induced tumor cell apoptosis in slice cultures of GBM surgical specimens and attenuated growth of mouse intracranial tumors derived from GSCs in a dose-dependent manner. Lastly, C1 treatment sensitizes GSCs to radiation treatment. Collectively, these data indicate that targeting MELK kinase activity is a promising approach to attenuate GBM growth by eliminating GSCs in tumors.  相似文献   

18.
MELK (maternal embryonic leucine zipper kinase) is a cell cycle dependent protein kinase involved in diverse cell processes including cell proliferation, apoptosis, cell cycle and mRNA processing. Noticeably, MELK expression is increased in cancerous tissues, upon cell transformation and in mitotically-blocked cells. The question of how MELK protein level is controlled is therefore important. Here, we show that MELK protein is restricted to proliferating cells derived from either cancer or normal tissues and that MELK protein level is severely decreased concomitantly with other cell cycle proteins in cells which exit the cell cycle. Moreover, we demonstrate in human HeLa cells and Xenopus embryos that approximately half of MELK protein is degraded upon mitotic exit whereas another half remains stable during interphase. We show that the stability of MELK protein in M-phase is dependent on its phosphorylation state.  相似文献   

19.
Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal links between splicing machinery components and the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome—the most common cause of deaf-blindness. Previously, SANS was shown to function only in the cytosol and primary cilia. Here, we have uncovered molecular links between SANS and pre-mRNA splicing catalyzed by the spliceosome in the nucleus. We show that SANS is found in Cajal bodies and nuclear speckles, where it interacts with components of spliceosomal sub-complexes such as SF3B1 and the large splicing cofactor SON but also with PRPFs and snRNAs related to the tri-snRNP complex. SANS is required for the transfer of tri-snRNPs between Cajal bodies and nuclear speckles for spliceosome assembly and may also participate in snRNP recycling back to Cajal bodies. SANS depletion alters the kinetics of spliceosome assembly, leading to accumulation of complex A. SANS deficiency and USH1G pathogenic mutations affects splicing of genes related to cell proliferation and human Usher syndrome. Thus, we provide the first evidence that splicing dysregulation may participate in the pathophysiology of Usher syndrome.  相似文献   

20.
The Prp19p protein of the budding yeast Saccharomyces cerevisiae is an essential splicing factor and is associated with the spliceosome during the splicing reaction. We have previously shown that Prp19p is not tightly associated with small nuclear ribonucleoprotein particles but is associated with a protein complex consisting of at least eight protein components. By sequencing components of the affinity-purified complex, we have identified Cef1p as a component of the Prp19p-associated complex, Ntc85p. Cef1p could directly interact with Prp19p and was required for pre-mRNA splicing both in vivo and in vitro. The c-Myb DNA binding motif at the amino terminus of Cef1p was required for cellular growth but not for interaction of Cef1p with Prp19p or Cef1p self-interaction. We have identified a small region of 30 amino acid residues near the carboxyl terminus required for both cell viability and protein-protein interactions. Cef1p was associated with the spliceosome in the same manner as Prp19p, i.e. concomitant with or immediately after dissociation of U4. The anti-Cef1p antibody inhibited binding to the spliceosome of Cef1p, Prp19p, and at least three other components of the Prp19p-associated complex, suggesting that the Prp19p-associated complex is likely associated with the spliceosome and functions as an integral complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号