首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Mutations in the IN domain of retroviral DNA may affect multiple steps of the virus life cycle, suggesting that the IN protein may have other functions in addition to its integration function. We previously reported that the human immunodeficiency virus type 1 IN protein is required for efficient viral DNA synthesis and that this function requires specific interaction with other viral components but not enzyme (integration) activity. In this report, we characterized the structure and function of the Moloney murine leukemia virus (MLV) IN protein in viral DNA synthesis. Using an MLV vector containing green fluorescent protein as a sensitive reporter for virus infection, we found that mutations in either the catalytic triad (D184A) or the HHCC motif (H61A) reduced infectivity by approximately 1,000-fold. Mutations that deleted the entire IN (DeltaIN) or 34 C-terminal amino acid residues (Delta34) were more severely defective, with infectivity levels consistently reduced by 10,000-fold. Immunoblot analysis indicated that these mutants were similar to wild-type MLV with respect to virion production and proteolytic processing of the Gag and Pol precursor proteins. Using semiquantitative PCR to analyze viral cDNA synthesis in infected cells, we found the Delta34 and DeltaIN mutants to be markedly impaired while the D184A and H61A mutants synthesized cDNA at levels similar to the wild type. The DNA synthesis defect was rescued by complementing the Delta34 and DeltaIN mutants in trans with either wild-type IN or the D184A mutant IN, provided as a Gag-IN fusion protein. However, the DNA synthesis defect of DeltaIN mutant virions could not be complemented with the Delta34 IN mutant. Taken together, these analyses strongly suggested that the MLV IN protein itself is required for efficient viral DNA synthesis and that this function may be conserved among other retroviruses.  相似文献   

2.
S Q Wei  K Mizuuchi    R Craigie 《The EMBO journal》1997,16(24):7511-7520
We have probed the nucleoprotein organization of Moloney murine leukemia virus (MLV) pre-integration complexes using a novel footprinting technique that utilizes a simplified in vitro phage Mu transposition system. We find that several hundred base pairs at each end of the viral DNA are organized in a large nucleoprotein complex, which we call the intasome. This structure is not formed when pre-integration complexes are made by infecting cells with integrase-minus virus, demonstrating a requirement for integrase. In contrast, footprinting of internal regions of the viral DNA did not reveal significant differences between pre-integration complexes with and without integrase. Treatment with high salt disrupts the intasome in parallel with loss of intermolecular integration activity. We show that a cellular factor is required for reconstitution of the intasome. Finally, we demonstrate that DNA-protein interactions involving extensive regions at the ends of the viral DNA are functionally important for retroviral DNA integration activity. Current in vitro integration systems utilizing purified integrase lack the full fidelity of the in vivo reaction. Our results indicate that both host factors and long viral DNA substrates may be required to reconstitute an in vitro system with all the hallmarks of DNA integration in vivo.  相似文献   

3.
Integration of the retroviral genome into host DNA is a critical step in the life cycle of a retrovirus. Although assays for in vitro integration have been developed, the actual DNA sequences targeted by murine leukemia retrovirus (MLV) during in vitro reproduction are unknown. While previous studies used artificial target sequences, we developed an assay using target DNA sequences from common MLV integration sites in Stat5a and c-myc in the genome of murine lymphomas and successfully integrated MLV into the target DNA in vitro. We calculated the free energy change during folding of the target sequence DNA and found a close correlation between the calculated free energy change and the number of integrations. Indeed, the integrations closely correlated with fluctuation of the structure of the target DNA segment. These data suggest that the fluctuation may generate a DNA structure favorable for in vitro integration into the target DNA. The approach described here can provide data on the biochemical properties of the integration reaction to which the target DNA structure may contribute.  相似文献   

4.
Integration of murine leukemia virus DNA depends on mitosis.   总被引:42,自引:4,他引:38       下载免费PDF全文
T Roe  T C Reynolds  G Yu    P O Brown 《The EMBO journal》1993,12(5):2099-2108
In synchronized rat or mouse cells infected with Moloney murine leukemia virus (MLV), integration of viral DNA and production of viral proteins occur only after the cells traverse mitosis. Integration is blocked when cells are prevented from progressing through mitosis. Viral nucleoprotein complexes isolated from arrested cells contain full-length viral DNA and can integrate this viral DNA in vitro, showing that the block to integration in arrested cells is not due to a lack of mature integration machinery. When infected cells traverse mitosis, there is a sharp increase in nuclear accumulation of viral DNA. The dependence of integration on mitosis may therefore be due to a requirement for mitosis and nuclear envelope breakdown for entry of the viral integration complex into the nucleus.  相似文献   

5.
Xenotropic murine leukemia virus (MLV)-related virus (XMRV) is a new human retrovirus associated with prostate cancer and chronic fatigue syndrome. The causal relationship of XMRV infection to human disease and the mechanism of pathogenicity have not been established. During retrovirus replication, integration of the cDNA copy of the viral RNA genome into the host cell chromosome is an essential step and involves coordinated joining of the two ends of the linear viral DNA into staggered sites on target DNA. Correct integration produces proviruses that are flanked by a short direct repeat, which varies from 4 to 6 bp among the retroviruses but is invariant for each particular retrovirus. Uncoordinated joining of the two viral DNA ends into target DNA can cause insertions, deletions, or other genomic alterations at the integration site. To determine the fidelity of XMRV integration, cells infected with XMRV were clonally expanded and DNA sequences at the viral-host DNA junctions were determined and analyzed. We found that a majority of the provirus ends were correctly processed and flanked by a 4-bp direct repeat of host DNA. A weak consensus sequence was also detected at the XMRV integration sites. We conclude that integration of XMRV DNA involves a coordinated joining of two viral DNA ends that are spaced 4 bp apart on the target DNA and proceeds with high fidelity.  相似文献   

6.
7.
The integrase encoded by human immunodeficiency virus type 1 (HIV-1) is required for integration of viral DNA into the host cell chromosome. In vitro, integrase mediates a concerted cleavage-ligation reaction (strand transfer) that results in covalent attachment of viral DNA to target DNA. With a substrate that mimics the strand transfer product, integrase carries out disintegration, the reverse of the strand transfer reaction, resolving this integration intermediate into its viral and target DNA parts. We used a set of disintegration substrates to study the catalytic mechanism of HIV-1 integrase and the interaction between the protein and the viral and target DNA sequence. One substrate termed dumbbell consists of a single oligonucleotide that can fold to form a structure that mimics the integration intermediate. Kinetic analysis using the dumbbell substrate showed that integrase turned over, establishing that HIV-1 integrase is an enzyme. Analysis of the disintegration activity on the dumbbell substrate and its derivatives showed that both the viral and target DNA parts of the molecule were required for integrase recognition. Integrase recognized target DNA asymmetrically: the target DNA upstream of the viral DNA joining site played a much more important role than the downstream target DNA in protein-DNA interaction. The site of transesterification was determined by both the DNA sequence of the viral DNA end and the structure of the branched substrate. Using a series of disintegration substrates with various base modifications, we found that integrase had relaxed structural specificity for the hydroxyl group used in transesterification and could tolerate distortion of the double-helical structure of these DNA substrates.  相似文献   

8.
The p12 protein is a cleavage product of the Gag precursor of the murine leukemia virus (MLV). Specific mutations in p12 have been described that affect early stages of infection, rendering the virus replication-defective. Such mutants showed normal generation of genomic DNA but no formation of circular forms, which are markers of nuclear entry by the viral DNA. This suggested that p12 may function in early stages of infection but the precise mechanism of p12 action is not known. To address the function and follow the intracellular localization of the wt p12 protein, we generated tagged p12 proteins in the context of a replication-competent virus, which allowed for the detection of p12 at early stages of infection by immunofluorescence. p12 was found to be distributed to discrete puncta, indicative of macromolecular complexes. These complexes were localized to the cytoplasm early after infection, and thereafter accumulated adjacent to mitotic chromosomes. This chromosomal accumulation was impaired for p12 proteins with a mutation that rendered the virus integration-defective. Immunofluorescence demonstrated that intracellular p12 complexes co-localized with capsid, a known constituent of the MLV pre-integration complex (PIC), and immunofluorescence combined with fluorescent in situ hybridization (FISH) revealed co-localization of the p12 proteins with the incoming reverse transcribed viral DNA. Interactions of p12 with the capsid and with the viral DNA were also demonstrated by co-immunoprecipitation. These results imply that p12 proteins are components of the MLV PIC. Furthermore, a large excess of wt PICs did not rescue the defect in integration of PICs derived from mutant p12 particles, demonstrating that p12 exerts its function as part of this complex. Altogether, these results imply that p12 proteins are constituent of the MLV PIC and function in directing the PIC from the cytoplasm towards integration.  相似文献   

9.
An in vitro integration system derived from avian leukosis virus-infected cells supports both intra- and intermolecular integration of the viral DNA. In the absence of polyethylene glycol, intramolecular integration of viral DNA molecules into themselves (autointegration) was preferred. In the presence of polyethylene glycol, integration into an exogenously supplied DNA target was greatly promoted. Analysis of integration intermediates revealed that the strand transfer mechanisms of both reactions were identical to those of retroviruses and some transposons: each 3' end of the donor molecule is joined to a 5' end of the cleaved target DNA. The immediate integration precursor appears to be linear viral DNA with the 3' ends shortened by 2 nucleotides. Finally, in the avian system, most cytoplasmic viral DNA appears to be incomplete and further DNA synthesis is required for integration in vitro.  相似文献   

10.
11.
We have investigated the mechanisms by which alleles at the mouse Fv-1 locus restrict replication of murine leukemia viruses. Inhibition of productive infection is closely paralleled by reduced accumulation of integrated proviral DNA as well as by reduced levels of linear viral DNA in a cytoplasmic fraction. Nevertheless, viral DNA is present at nearly normal levels in a nuclear fraction, and total amounts of viral DNA are only mildly affected in restrictive infections, suggesting a block in integration to account for reduced levels of proviral DNA. However, integrase (IN)-dependent trimming of 3' ends of viral DNA occurs normally in vivo during restrictive infections, demonstrating that not all IN-mediated events are prevented in vivo. Furthermore, viral integration complexes present in nuclear extracts of infected restrictive cells are fully competent to integrate their DNA into a heterologous target in vitro. Thus, the Fv-1-dependent activity that restricts integration in vivo may be lost in vitro; alternatively, Fv-1 restriction may prevent a step required for integration in vivo that is bypassed in vitro.  相似文献   

12.
Retroviral integration into minichromosomes in vitro.   总被引:15,自引:0,他引:15       下载免费PDF全文
P M Pryciak  A Sil    H E Varmus 《The EMBO journal》1992,11(1):291-303
We describe here the use of chromatin as a target for retroviral integration in vitro. Extracts of cells newly infected with murine leukemia virus (MLV) provided the source of integration activity, and yeast TRP1ARS1 and SV40 minichromosomes served as simple models for chromatin. Both minichromosomes were used as targets for integration, with efficiencies comparable with that of naked DNA. In addition, under some reaction conditions the minichromosomes behaved as if they were used preferentially over naked DNAs in the same reaction. Mapping of integration sites by cloning and sequencing recombinants revealed that the integration machinery does not display a preference for nucleosome-free, nuclease-sensitive regions. The distributions of integration sites in TRP1ARS1 minichromosomes and a naked DNA counterpart were grossly similar, but in a detailed analysis the distribution in minichromosomes was found to be significantly more ordered: the sites displayed a periodic spacing of approximately 10 bp, many sites sustained multiple insertions and there was sequence bias at the target sites. These results are in accord with a model in which the integration machinery has preferential access to the exposed face of the nucleosomal DNA helix. The population of potential sites in chromatin therefore becomes more limited, in a manner dictated by the rotational orientation of the DNA sequence around the nucleosome core, and those sites are used more frequently than in naked DNA.  相似文献   

13.
A Engelman  K Mizuuchi  R Craigie 《Cell》1991,67(6):1211-1221
Retroviral DNA integration involves a coordinated set of DNA cutting and joining reactions. Linear viral DNA is cleaved at each 3' end to generate the precursor ends for integration. The resulting recessed 3' ends are inserted into target DNA by a subsequent DNA strand transfer reaction. Purified HIV-1 integration protein carries out both of these steps in vitro. Two novel forms of the dinucleotide cleaved from HIV-1 DNA were identified and one, a cyclic dinucleotide, was used to analyze the stereochemical course of viral DNA cleavage. Both viral DNA cleavage and DNA strand transfer display inversion at chiral phosphorothioates during the course of the reaction. These results suggest that both reactions occur by a one-step mechanism without involvement of a covalent protein-DNA intermediate.  相似文献   

14.
L I Lobel  J E Murphy    S P Goff 《Journal of virology》1989,63(6):2629-2637
We generated viral constructs to test the hypothesis that the major substrate on retroviral DNA that is utilized for proviral DNA integration is the palindromic sequence, termed the LTR-LTR junction, normally present in circular molecules formed by joining the two termini of linear proviral DNA. Recombinant viral genomes were built which carried a selectable marker and an extra copy of the LTR-LTR junction from a cloned circular provirus. The junction sequence in each case was positioned such that its use during integration would lead to an easily detected, aberrantly integrated proviral DNA. Analysis of DNA from cells infected with the virus constructs showed that the introduced junction sequence is used at least 1,000-fold less efficiently than the natural sequences at the ends of the genome. This suggests that a linear or more exotic DNA intermediate is most likely the true precursor for the integration reaction.  相似文献   

15.
16.
Human immunodeficiency virus integration in a cell-free system.   总被引:43,自引:23,他引:20       下载免费PDF全文
V Ellison  H Abrams  T Roe  J Lifson    P Brown 《Journal of virology》1990,64(6):2711-2715
Integration of the viral genome into the nuclear DNA of a host cell plays a pivotal role in the replication of retroviruses. We have developed an in vitro method for studying the biochemistry of human immunodeficiency virus (HIV) integration by using extracts from HIV-infected cells. Analysis of the reaction products showed that HIV integration in vitro accurately reproduces the in vivo process. Integration occurred without apparent specificity for the target sequence, and the integrated provirus was directly flanked by a 5-base-pair duplication of DNA from the target site. HIV integration did not require a high-energy cofactor, and the enzymatic activities required for integration were recovered with the viral DNA when cell extracts were fractionated by gel exclusion chromatography.  相似文献   

17.
Integration of the retrovirus linear DNA genome into the host chromosome is an essential step in the viral replication cycle, and is catalyzed by the viral integrase (IN). Evidence suggests that IN functions as a dimer that cleaves a dinucleotide from the 3′ DNA blunt ends while a dimer of dimers (tetramer) promotes concerted integration of the two processed ends into opposite strands of a target DNA. However, it remains unclear why a dimer rather than a monomer of IN is required for the insertion of each recessed DNA end. To help address this question, we have analyzed crystal structures of the Rous sarcoma virus (RSV) IN mutants complete with all three structural domains as well as its two-domain fragment in a new crystal form at an improved resolution. Combined with earlier structural studies, our results suggest that the RSV IN dimer consists of highly flexible N-terminal domains and a rigid entity formed by the catalytic and C-terminal domains stabilized by the well-conserved catalytic domain dimerization interaction. Biochemical and mutational analyses confirm earlier observations that the catalytic and the C-terminal domains of an RSV IN dimer efficiently integrates one viral DNA end into target DNA. We also show that the asymmetric dimeric interaction between the two C-terminal domains is important for viral DNA binding and subsequent catalysis, including concerted integration. We propose that the asymmetric C-terminal domain dimer serves as a viral DNA binding surface for RSV IN.  相似文献   

18.
19.
Mu-mediated polymerase chain reaction footprinting was used to investigate the protein-DNA structure of human immunodeficiency virus type I (HIV-I) preintegration complexes. Preintegration complexes were partially purified from cells after using an established coculture infection technique as well as a novel technique using cell-free supernatant from transfected cells as the source of virus. Footprinting revealed that bound proteins protected the terminal 200-250 base pairs of each viral end from nuclease attack. Bound proteins also caused strong transpositional enhancements near each end of HIV-I. In contrast, regions of viral DNA internal to the ends did not show evidence of strong protein binding. The end regions of preintegrative HIV-I apparently form a unique nucleoprotein structure, which we term the intasome to distinguish it from the greater preintegration complex. Our novel system also allowed us to analyze the structure and function of preintegration complexes isolated from cells infected with integrase mutant viruses. Complexes were derived from viruses defective for either integrase catalysis, integrase binding to the viral DNA substrate, or an unknown function in the carboxyl-terminal domain of the integrase protein. None of these mutant complexes supported detectable integration activity. Despite the presence of the mutant integrase proteins in purified samples, none of these nucleoprotein complexes displayed the native intasome structure detected in wild-type preintegration complexes. We conclude that multiple integrase functions are required to form the native structure of the HIV-I intasome in infected cells.  相似文献   

20.
T Roe  S A Chow    P O Brown 《Journal of virology》1997,71(2):1334-1340
Retroviral replication depends on integration of viral DNA into a host cell chromosome. Integration proceeds in three steps: 3'-end processing, the endonucleolytic removal of the two terminal nucleotides from each 3' end of the viral DNA; strand transfer, the joining of the 3' ends of viral DNA to host DNA; and 5'-end joining (or gap repair), the joining of the 5' ends of viral DNA to host DNA. The 5'-end joining step has never been investigated, either for retroviral integration or for any other transposition process. We have developed an assay for 5'-end joining in vivo and have examined the kinetics of 5'-end joining for Moloney murine leukemia virus (MLV). The interval between 3'-end and 5'-end joining is estimated to be less than 1 h. This assay will be a useful tool for examining whether viral or host components mediate 5'-end joining. MLV integrates its DNA only after its host cell has completed mitosis. We show that the extent of 3'-end processing is the same in unsynchronized and aphidicolin-arrested cells. 3'-end processing therefore does not depend on mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号