首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formins are downstream effector proteins of Rho-type GTPases and are involved in the organization of the actin cytoskeleton and actin cable assembly at sites of polarized cell growth. Here we show using in vivo time-lapse microscopy that deletion of the Candida albicans formin homolog BNI1 results in polarity defects during yeast growth and hyphal stages. Deletion of the second C. albicans formin, BNR1, resulted in elongated yeast cells with cell separation defects but did not interfere with the ability of bnr1 cells to initiate and maintain polarized hyphal growth. Yeast bni1 cells were swollen, showed an increased random budding pattern, and had a severe defect in cytokinesis, with enlarged bud necks. Induction of hyphal development in bni1 cells resulted in germ tube formation but was halted at the step of polarity maintenance. Bni1-green fluorescent protein is found persistently at the hyphal tip and colocalizes with a structure resembling the Spitzenk?rper of true filamentous fungi. Introduction of constitutively active ras1G13V in the bni1 strain or addition of cyclic AMP to the growth medium did not bypass bni1 hyphal growth defects. Similarly, these agents were not able to suppress hyphal growth defects in the wal1 mutant which is lacking the Wiskott-Aldrich syndrome protein (WASP) homolog. These results suggest that the maintenance of polarized hyphal growth in C. albicans requires coordinated regulation of two actin cytoskeletal pathways, including formin-mediated secretion and WASP-dependent endocytosis.  相似文献   

2.
Candida albicans undergoes a dramatic morphological transition in response to various growth conditions. This ability to switch from a yeast form to a hyphal form is required for its pathogenicity. The intractability of Candida to traditional genetic approaches has hampered the study of the molecular mechanism governing this developmental switch. Our approach is to use the more genetically tractable yeast Saccharomyces cerevisiae to yield clues about the molecular control of filamentation for further studies in Candida. G1 cyclins Cln1 and Cln2 have been implicated in the control of morphogenesis in S. cerevisiae. We show that C. albicans CLN1 (CaCLN1) has the same cell cycle-specific expression pattern as CLN1 and CLN2 of S. cerevisiae. To investigate whether G1 cyclins are similarly involved in the regulation of cell morphogenesis during the yeast-to-hypha transition of C. albicans, we mutated CaCLN1. Cacln1/Cacln1 cells were found to be slower than wild-type cells in cell cycle progression. The Cacln1/Cacln1 mutants were also defective in hyphal colony formation on several solid media. Furthermore, while mutant strains developed germ tubes under several hypha-inducing conditions, they were unable to maintain the hyphal growth mode in a synthetic hypha-inducing liquid medium and were deficient in the expression of hypha-specific genes in this medium. Our results suggest that CaCln1 may coordinately regulate hyphal development with signal transduction pathways in response to various environmental cues.  相似文献   

3.
Morphogenesis in the fungal pathogen Candida albicans is an important virulence-determining factor, as a dimorphic switch between yeast and hyphal growth forms can increase pathogenesis. We identified CaCDC5, a cell cycle regulatory polo-like kinase (PLK) in C. albicans and demonstrate that shutting off its expression induced cell cycle defects and dramatic changes in morphology. Cells lacking CaCdc5p were blocked early in nuclear division with very short spindles and unseparated chromatin. GFP-tagged CaCdc5p localized to unseparated spindle pole bodies, the spindle, and chromatin, consistent with a role in spindle elongation at an earlier point in the cell cycle than that described for the homologue Cdc5p in yeast. Strikingly, the cell cycle defects were accompanied by the formation of hyphal-like filaments under yeast growth conditions. Filament growth was determinate, as the filaments started to die after 24 h. The filaments resembled serum-induced hyphae with respect to morphology, organization of cytoplasmic microtubules, localization of nuclei, and expression of hyphal-specific components. Filament formation required CaCDC35, but not EFG1 or CPH1. Similar defects in spindle elongation and a corresponding induction of filaments occurred when yeast cells were exposed to hydroxyurea. Because CaCdc5p does not appear to act as a direct repressor of hyphal growth, the data suggest that a target of CaCdc5p function is associated with hyphal-like development. Thus, an internal, cell cycle-related cue can activate hyphal regulatory networks in Candida.  相似文献   

4.
Stationary phase cells of Candida albicans can form either a bud or a hypha, depending upon the pH of the medium into which they are released. At low pH, cells form an ellipsoidal bud and at high pH, cells form an elongated hypha. By staining cells with rhodamine-conjugated phalloidin, we have compared the dynamics of actin localization during the formation of buds and hyphae. Before evagination, actin granules were distributed throughout the cytoplasmic cortex in both budding and hypha-forming cells. Just before evagination, actin granules clustered at the site of evagination, then filled the early evagination in both budding and hypha-forming cells. With continued bud growth, the actin granules then redistributed throughout the cytoplasmic cortex. In marked contrast, with continued hyphal growth, the majority of actin granules clustered at the hyphal apex. This distinct difference in actin granule localization may be related to the distinct differences in the expansion zones of the cell wall recently demonstrated between growing buds and hyphae. The spatial and temporal dynamics of the large neck actin granules and of actin fibres are also described.  相似文献   

5.
The human fungal pathogen Candida albicans changes from a budding yeast form to a polarized hyphal form in response to various external conditions. Dimorphic switching of C. albicans has been implicated in the development of pathogenicity. Morphogenic transformation requires polarized cell growth and rearrangement of the cytoskeleton. We previously showed that myosins play key roles in the conversion from the bud to the hyphal form of C. albicans by inhibiting myosin activities with 2,3-butanedione-2-monoxime (BDM), a general myosin ATPase inhibitor. In this study we investigated the function of MYO2 in C. albicans using deletion mutants. The amino acid sequence of CaMYO2 shows 60% identity and 77% homology with MYO2 and 54% identity and 70% homology with MYO4 of budding yeast Saccharomyces cerevisiae, suggesting that CaMYO2 is the only class V myosin in C. albicans. Cells in which both CaMYO2 alleles were deleted were viable, suggesting that MYO2 is nonessential in C. albicans. The proliferation of CaMYO2delta cells, however, was sharply decreased. In addition, CaMYO2delta cells showed defects in assembly and polarized localization of F-actin as well as an inability to induce germ tube formation and hyphal growth. The deletion of CaMYO2 also disrupted the shape and migration of the nucleus. These results strongly suggest that CaMYO2 is essential for polarized growth and hyphal transition in C. albicans.  相似文献   

6.
Saccharomyces cerevisiae Hsl1p is a Ser/Thr protein kinase that regulates cell morphology. We identified Candida albicans CaHSL1 and analysed its function in C. albicans. Cells lacking CaHsl1p exhibited filamentous growth under yeast growth conditions with the filaments elongating more quickly than did those of the wild type under hyphal growth conditions, suggesting that it plays a role in the suppression of cell elongation. Green fluorescent protein-tagged CaHsl1p colocalized with a septin complex to the bud neck during yeast growth or to a potent septation site during hyphal growth, as expected from the localization in S. cerevisiae. However, the localization of the septin complex did not change in DeltaCahsl1, suggesting that CaHsl1p does not participate in septin organization. CaHsl1p was expressed in a cell cycle-dependent manner and, except for the G1 phase, phosphorylated throughout the cell cycle. In DeltaCahsl1 cells, the phosphorylation of a possible CaHsl1p target CaSwe1p decreased, while that of CaCdc28p at tyrosine18 increased. Either an extra copy of the tyrosine18-mutated CaCdc28p or deletion of CaSWE1 suppressed the cell elongation phenotype caused by CaHSL1 deletion. Furthermore, DeltaCahsl1 exhibited reduced virulence in the mouse systemic candidiasis model. Thus, the CaHsl1p-CaSwe1p-CaCdc28p pathway appears important in the cell elongation of both the yeast and hyphal forms and to the virulence of C. albicans.  相似文献   

7.
Filamentous fungi are ideal systems to study the process of polarized growth, as their life cycle is dominated by hyphal growth exclusively at the cell apex. The actin cytoskeleton plays an important role in this growth. Until now, there have been no tools to visualize actin or the actin-binding protein fimbrin in live cells of a filamentous fungus. We investigated the roles of actin (ActA) and fimbrin (FimA) in hyphal growth in Aspergillus nidulans . We examined the localization of ActA::GFP and FimA::GFP in live cells, and each displayed a similar localization pattern. In actively growing hyphae, cortical ActA::GFP and FimA::GFP patches were highly mobile throughout the hypha and were concentrated near hyphal apices. A patch-depleted zone occupied the apical 0.5 μm of growing hypha. Both FimA::GFP and Act::GFP also localize transiently to septa. Movement and later localization of both was compromised after cytochalasin treatment. Disruption of fimA resulted in delayed polarity establishment during conidium germination, abnormal hyphal growth and endocytosis defects in apolar cells. Endocytosis was severely impaired in apolar fimA disruption cells. Our data support a novel apical recycling model which indicates a critical role for actin patch-mediated endocytosis to maintain polarized growth at the apex.  相似文献   

8.
Ashbya gossypii has been an ideal system to study filamentous hyphal growth. Previously, we identified a link between polarized hyphal growth, the organization of the actin cytoskeleton and endocytosis with our analysis of the A. gossypii Wiskott-Aldrich Syndrome Protein (WASP)-homolog encoded by the AgWAL1 gene. Here, we studied the role of AgSAC6, encoding a fimbrin in polarized hyphal growth and endocytosis, and based on our functional analysis identified genetic interactions between AgSAC6 and AgWAL1. SAC6 mutants show severely reduced polarized growth. This growth phenotype is temperature dependent and sac6 spores do not germinate at elevated temperatures. Spores germinated at 30 °C generate slow growing mycelia without displaying polarity establishment defects at the hyphal tip. Several phenotypic characteristics of sac6 hyphae resemble those found in wal1 mutants. First, tips of sac6 hyphae shifted to 37 °C swell and produce subapical bulges. Second, actin patches are mislocalized subapically. And third, the rate of endocytotic uptake of the vital dye FM4-64 was reduced. This indicates that actin filament bundling, a conserved function of fimbrins, is required for fast polarized hyphal growth, polarity maintenance, and endocytosis in filamentous fungi.  相似文献   

9.
Summary Candida tropicalis is a dimorphic yeast capable of growing both as a budding yeast and as filamentous hyphae depending upon the source of the carbon used in the culture medium. The organization of F-actin during growth of the yeast form (Y-form) and the hyphal form (H-form) was visualized by rhodamine-conjugated phalloidin by using a conventional fluorescence microscope as well as a laser scanning confocal fluorescence microscope. In single cells without a bud or non-growing hyphae, actin dots were evenly distributed throughout the cytoplasm. Before the growth of the bud or hypha, the actin dots were concentrated at one site. During bud growth, actin dots were located solely in the bud. They filled the small bud and then filled the apical two-thirds of the cytoplasm of the middlesized bud. During growth of the large bud, actin dots which had filled the apical half of the cytoplasm gradually moved to the tip of the bud. In the formation of the septum, actin dots were arranged in two lines at the conjunction of the bud and the mother cell. During hyphal growth, the majority of actin dots were concentrated at the hyphal apex. A line of clustered spots or a band of actin was observed only at the site where the formation of a new septum was imminent. This spatial and temporal organization of actin in both categories of cells was demonstrated to be closely related to the growth and local deposition of new cell wall material by monitoring the mode of growth with Calcofluor staining. Treatment of both forms of cells with cytochalasin A (CA) confirmed the close relationship between actin and new cell wall deposition. CA treatment revealed lightly stained unlocalized actin which was associated with abnormal cell wall deposition as well as changes in morphology. These results suggest that actin is required for proper growth and proper deposition of cell wall material and also for maintaining the morphology of both forms of cells.Abbrevations FM fluorescence microscopy - EM electron microscopy - rh rhodamine - CA cytochalasin A - CD cytochalasin D - PBS phosphate-buffered saline - DMSO dimethylsulfoxide - GA glutaraldehyde  相似文献   

10.
By using real-time RT-PCR, we profiled the expression of CGR1, CaMSI3, EFG1, NRG1, and TUP1 in Candida albicans strains JCM9061 and CAI4 under several conditions, including induction of morphological transition, heat shock, and treatment with calcium inhibitors. Expression of CaMSI3 changed under these growth conditions except during heat shock. CGR1 expression increased during the early stages of hyphal growth in JCM9061, while expression was strain-dependent during heat shock. Both EFG1 and NRG1 were similarly expressed under hypha-inducing conditions and heat shock. Expression of TUP1 was slightly different from the expression of EFG1 or NRG1.  相似文献   

11.
12.
13.
A dynamic balance between targeted transport and endocytosis is critical for polarized cell growth. However, how actin-mediated endocytosis is regulated in different growth modes remains unclear. Here we report differential regulation of cortical actin patch dynamics between the yeast and hyphal growth in Candida albicans. The mechanism involves phosphoregulation of the endocytic protein Sla1 by the cyclin-dependent kinase (CDK) Cdc28-Cln3 and the actin-regulating kinase Prk1. Mutational studies of the CDK phosphorylation sites of Sla1 revealed that Cdc28-Cln3 phosphorylation of Sla1 enhances its further phosphorylation by Prk1, weakening Sla1 association with Pan1, an activator of the actin-nucleating Arp2/3 complex. Sla1 is rapidly dephosphorylated upon hyphal induction and remains so throughout hyphal growth. Consistently, cells expressing a phosphomimetic version of Sla1 exhibited markedly reduced actin patch dynamics, impaired endocytosis, and defective hyphal development, whereas a nonphosphorylatable Sla1 had the opposite effect. Taken together, our findings establish a molecular link between CDK and a key component of the endocytic machinery, revealing a novel mechanism by which endocytosis contributes to cell morphogenesis.  相似文献   

14.
Candida albicans is a human pathogenic fungus which can undergo a morphological transition from yeast to hyphae in response to a variety of environmental stimuli. We analyzed a C. albicans Asc1 (Absence of growth Suppressor of Cyp1) protein which is entirely composed of seven repeats of the WD domain, and is conserved from fungi to metazoan. Deleting the ASC1 in C. albicans led to a profound defect in hyphal development under hypha-inducing conditions examined. Furthermore, deletion of the ASC1 attenuated virulence of C. albicans in a mouse model of systemic infection. These data strongly suggested that the conserved WD-repeat protein Asc1 is required for morphogenesis and pathogenesis of C. albicans.  相似文献   

15.
Cell wall biogenesis is a dynamic process relying on the coordinated activity of several extracellular enzymes. PHR1 is a pH-regulated gene of Candida albicans encoding a glycosylphosphatidylinositol-anchored β(1,3)-glucanosyltransferase of family GH72 which acts as a cell wall remodelling enzyme and is crucial for morphogenesis and virulence. In order to explore the function of Phr1p, we obtained a green fluorescent protein (GFP) fusion to determine its localization. During induction of vegetative growth, Phr1p-GFP was concentrated in the plasma membrane of the growing bud, in the mother-bud neck, and in the septum. Phr1p-GFP was recovered in the detergent-resistant membranes indicating its association with the lipid rafts as the wild type Phr1p. Upon induction of hyphal growth, Phr1p-GFP highly concentrated at the apex of the germ tubes and progressively distributed along the lateral sides of the hyphae. Phr1p-GFP also labelled the hyphal septa, where it colocalized with chitin. Localization to the hyphal septa was perturbed in nocodazole-treated cells, whereas inhibition of actin polymerization hindered the apical localization. Electron Microscopy analysis of the hyphal wall ultrastructure of a PHR1 null mutant showed loss of compactness and irregular organization of the surface layer. These observations indicate that Phr1p plays a crucial role in hyphal wall formation, a highly regulated process on which morphogenesis and virulence rely.  相似文献   

16.
WIP, the Wiskott-Aldrich syndrome protein-interacting protein, is a human protein involved in actin polymerization and redistribution in lymphoid cells. The mechanism by which WIP reorganizes actin cytoskeleton is unknown. WIP is similar to yeast verprolin, an actin- and myosin-interacting protein required for polarized morphogenesis. To determine whether WIP and verprolin are functional homologues, we analyzed the function of WIP in yeast. WIP suppresses the growth defects of VRP1 missense and null mutations as well as the defects in cytoskeletal organization and endocytosis observed in vrp1-1 cells. The ability of WIP to replace verprolin is dependent on its WH2 actin binding domain and a putative profilin binding domain. Immunofluorescence localization of WIP in yeast cells reveals a pattern consistent with its function at the cortical sites of growth. Thus, like verprolin, WIP functions in yeast to link the polarity development pathway and the actin cytoskeleton to generate cytoskeletal asymmetry. A role for WIP in cell polarity provides a framework for unifying, under a common paradigm, distinct molecular defects associated with immunodeficiencies like Wiskott-Aldrich syndrome.  相似文献   

17.
Candida albicans RHO1 is required for cell viability in vitro and in vivo   总被引:2,自引:0,他引:2  
In Saccharomyces cerevisiae, Rho1p plays an important role in cell wall integrity by regulating beta-1,3-glucan synthase, Pkc1p and the actin cytoskeleton. To determine the physiological role of Rho1p in the dimorphic fungus Candida albicans, the major human fungal pathogen, we constructed mutants that conditionally express Rho1p from the glucose-repressible phosphoenolpyruvate carboxykinase promoter (pPCK1). We examined the growth of these cells in a range of conditions. Depletion of Rho1p from yeast cells resulted in cell death, lysis, and aggregation. The Rho1p conditional mutant was inviable on 10% serum indicating that Rho1p was also required for hyphal viability. Furthermore, in a mouse model of systemic candidiasis, strains dependent on pPCK1-driven RHO1 expression failed to colonise the kidneys and establish disease, suggesting that the level of glucose in serum was sufficient to repress the pPCK1 and that Rho1p-depleted strains were inviable within the host. Therefore, Rho1p is essential for the viability of C. albicans in vitro and in vivo.  相似文献   

18.
Zheng XD  Lee RT  Wang YM  Lin QS  Wang Y 《The EMBO journal》2007,26(16):3760-3769
Cyclin-dependent kinases (CDKs) control yeast morphogenesis, although how they regulate the polarity machinery remains unclear. The dimorphic fungus Candida albicans uses Cdc28/Hgc1, a CDK/cyclin complex, to promote persistent actin polarization for hyphal growth. Here, we report that Rga2, a GTPase-activating protein (GAP) of the central polarity regulator Cdc42, undergoes Hgc1-dependent hyperphosphorylation. Using the analog-sensitive Cdc28as mutant, we confirmed that Cdc28 controls Rga2 phosphorylation in vitro and in vivo. Deleting RGA2 produced elongated yeast cells without apparent effect on hyphal morphogenesis. However, deleting it or inactivating its GAP activity restored hyphal growth in hgc1Delta mutants, suggesting that Rga2 represses hyphal development and Cdc28/Hgc1 inactivates it upon hyphal induction. We provide evidence that Cdc28/Hgc1 may act to prevent Rga2 from localizing to hyphal tips, leading to localized Cdc42 activation for hyphal extension. Rga2 also undergoes transient Cdc28-dependent hyperphosphorylation at bud emergence, suggesting that regulating a GAP(s) of Cdc42 by CDKs may play an important role in governing different forms of polarized morphogenesis in yeast. This study reveals a direct molecular link between CDKs and the polarity machinery.  相似文献   

19.
The morphogenetic program in the pathogenic fungus Candida albicans, including the dimorphic transition, is an interesting field of study, not only because it is absent in the commonly used model yeast Saccharomyces cerevisiae, but because of the close relationship between hyphal development and virulence of C. albicans. We studied one of the most important aspects of fungal morphogenesis--the septin ring--in C. albicans. By using a fusion construct to green fluorescent protein (GFP), the subcellular localization and dynamics of C. albicans Cdc10 in the different morphologies that this fungus is able to adopt was identified. The localization features reached were contrasted and compared with the results obtained from Candida cells directly extracted from an animal infection model under environmental conditions as similar as possible to the physiological conditions encountered by C. albicans during host infection.  相似文献   

20.
Coronin plays a major role in the organization and dynamics of actin in yeast. To investigate the role of coronin in a filamentous fungus (Neurospora crassa), we examined its subcellular localization using fluorescent proteins and the phenotypic consequences of coronin gene (crn-1) deletion in hyphal morphogenesis, Spitzenk?rper behavior and endocytosis. Coronin-GFP was localized in patches, forming a subapical collar near the hyphal apex; significantly, it was absent from the apex. The subapical patches of coronin colocalized with fimbrin, Arp2/3 complex, and actin, altogether comprising the endocytic collar. Deletion of crn-1 resulted in reduced hyphal growth rates, distorted hyphal morphology, uneven wall thickness, and delayed establishment of polarity during germination; it also affected growth directionality and increased branching. The Spitzenk?rper of Δcrn-1 mutant was unstable; it appeared and disappeared intermittently giving rise to periods of hyphoid-like and isotropic growth respectively. Uptake of FM4-64 in Δcrn-1 mutant indicated a partial disruption in endocytosis. These observations underscore coronin as an important component of F-actin remodeling in N. crassa. Although coronin is not essential in this fungus, its deletion influenced negatively the operation of the actin cytoskeleton involved in the orderly deployment of the apical growth apparatus, thus preventing normal hyphal growth and morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号