首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brassica napus suspension-cultured cells could be hardened in 6 days at 25°C by the addition of mefluidide or ABA to the culture medium. Cells treated with mefluidide (10 milligrams per liter) or ABA (50 micromolar) attained an LT50 of −17.5°C or −18°C, respectively, while the LT50 for the comparable nonhardened control (sucrose) was −10°C. The increased freezing tolerance of mefluidide-treated cells was paralleled by a 4- to 23-fold increase in ABA, as measured by gas-liquid chromatography using electron capture detection. Application of 1 milligram per liter of fluridone, an inhibitor of abscisic acid biosynthesis, prevented the mefluidide-induced increase in freezing tolerance and the accumulation of ABA. Both these inhibitory effects of fluridone were overridden by 50 micromolar ABA in the culture medium. On the basis of these results, we concluded that increased ABA levels are important for the induction of freezing tolerance in suspension-cultured cells.  相似文献   

2.
The aim of the present study was to estimate the endogenous abscisic acid (ABA) content in tulip ‘Apeldoorn’ torpedo and mature somatic embryos. Moreover, the effect of exogenous ABA and/or its inhibitor fluridone on somatic embryo maturation and conversion into plantlets was investigated. Torpedo-stage somatic embryos were subcultured on media containing 5 μM of picloram and 1 μM of 6-benzyl-aminopurine (BAP)—control, and combinations of ABA (0 or 10 μM) and/or fluridone (0 or 30 μM) for 1 week. Then, the torpedo embryos were transferred to a maturation medium containing 0.25 μM of α-naphthaleneacetic acid (NAA) and 2.5 μM of BAP, without ABA and fluridone treatment, and cultivated under darkness or light for ten weeks. Endogenous ABA content (first time measured in tulip somatic embryos) was evaluated by ELISA test. The obtained results revealed that the highest level of endogenous ABA, at 17.45 nmol g?1 dry weight (DW), was recorded in torpedo-stage of tulip embryo development, only after 1 week of ABA treatment, and was nearly 10 times higher in comparison with the control. Simultaneous addition of ABA and fluridone to the medium resulted in the lowering of the ABA concentration to 9.58 nmol g?1 DW. During ten weeks of maturation of the embryos, the endogenous ABA content in mature tissue of tulip somatic embryo considerably decreased to an amount 0.87–1.33 nmol g?1 DW (irrespective of ABA and fluridone treatment) and did not differ significantly from control (0.59 nmol g?1 DW). Exogenous ABA and fluridone significantly decreased the growth value of fresh weight (FW) of the tulip torpedo-shaped and mature embryos under light conditions. Percentage of the DW of the torpedo embryos treated with exogenous ABA was significantly higher (15.43–17.02) in comparison with the control (10.87). Three to three and a half times more malformed mature embryos were noted under light conditions than in darkness, irrespective of ABA and fluridone treatment. The highest percentage of mature embryos forming shoots (conversion) was observed under light conditions in the control and after fluridone treatment (26 and 20%, respectively).  相似文献   

3.
Abscisic Acid in Developing Zygotic Embryos of Theobroma cacao   总被引:1,自引:1,他引:0       下载免费PDF全文
Pence VC 《Plant physiology》1991,95(4):1291-1293
Abscisic acid (ABA) levels were measured by enzyme-linked immunosorbent assay in developing zygotic embryos of Theobroma cacao. ABA was detected in all embryos tested, with a peak of ABA at levels of 1 to 3 micrograms per gram fresh weight during early maturation. This corresponded to embryos of 10 to 30% dry weight and to early stages of anthocyanin and lipid accumulation.  相似文献   

4.
When applied to young nondormant embryos of sunflower (Hellanthus annus) (7-10 day[s] after pollination [DAP]), abscisic acid (ABA) inhibited germination as long as it was present. However, whatever the dose used and the duration of its application, ABA was unable to induce dormancy because after transfer of treated embryos to control (without ABA) medium, germination occurred. Thereafter, exogenous ABA became effective and allowed the dormancy to develop in 13 and 17 DAP embryos, i.e. in embryos which after isolation were still able to germinate in high percentage. After embryo dormancy was well established (21 DAP), application of fluridone allowed the germination to occur very quickly on control medium. Isolated dormant axes were also induced to germinate by an application of fluridone. Radioimmunological analysis showed that 24 hours after these treatments, endogenous ABA levels were drastically reduced in the axes. When these fluridone-treated embryos were cultured on ABA medium, germination was again inhibited as long as exogenous ABA was present but germination occurred as soon as embryos were transferred to control medium. Such behavior suggested that in situ ABA synthesis is necessary to impose and maintain the embryo dormancy.  相似文献   

5.
Sectors of Zea mays cobs, with and without kernels were cultured in vitro in the presence and absence of fluridone. Cultured kernels, cob tissue, and embryos developed similarly to those grown in the field. Abscisic acid (ABA) levels in the embryos were evaluated by enzyme-linked immunosorbant assay. ABA levels in intact embryos cultured in the presence of fluridone were extremely low and indicate an inhibition of ABA synthesis. ABA levels in isolated cob tissue indicate that ABA can be produced by cob tissue. Sections containing kernels cultured in the presence of fluridone were transferred to medium containing fluridone and ABA. Dormancy was induced in more than 50% of the kernels transferred from 13 to 15 days after pollination, but all of the kernels transferred at 16 days after pollination or later were viviparous. ABA recovered from kernels that were placed in medium containing fluridone and ABA suggest that ABA can be transported through the cob tissue into developing embryos and that ABA is required for induction of dormancy in intact embryos.  相似文献   

6.
Mature seeds of Helianthus annuus L. exhibit dormancy that is eliminated during storage in dry conditions. In vitro culture of immature embryos isolated at different times after anthesis showed that the youngest embryos are able to germinate, but within the third week after pollination, dormancy progressively affected most of the embryos. A radioimmunoassay showed that the endogenous abscisic acid (ABA) level, which increased sharply in the first half of the development period, fell at precisely the moment when embryo dormancy became established. An application of fluridone, before the increase of ABA level, prevented both ABA synthesis and development of embryo dormancy. Applied later, after the rise of the ABA level, fluridone could not prevent embryo dormancy development. Dormancy thus appears to be dependent on ABA synthesis but not concomitant with its accumulation; it must therefore be induced by ABA during maturation. Furthermore, a preincubation in water allowed dormant embryos to germinate. This acquisition of germinability could not be directly related to a leaching of free ABA. Possible effects of this treatment are discussed.  相似文献   

7.
Role of ABA in Maturation of Rapeseed Embryos   总被引:28,自引:5,他引:23  
Development of Brassica napus L. cv Tower embryos of different ages cultured in vitro with and without abscisic acid (ABA) was compared with normal development in situ to investigate the role of ABA in embryo maturation. Endogenous ABA levels were measured by radioimmunoassay, and sensitivity to ABA was assayed in terms of its ability to suppress precocious germination and stimulate accumulation of storage protein and storage protein mRNA. During development in situ, the levels of endogenous ABA and 12S storage protein mRNA both reach their peaks just before the embryos begin to desiccate. The ABA levels during this phase of development also correlate with the time required in culture before germination is evident. Following these peaks, increasing concentrations of exogenous ABA are required to both suppress germination and continue storage protein accumulation in vitro. Thus, both endogenous ABA and ABA sensitivity decline during maturation. The concentrations of exogenous ABA required to suppress germination at these later stages result in abnormally high levels of endogenous ABA and appear to be toxic. These results are consistent with the hypothesis that in maturing rapeseeds, low water content rather than ABA prevents germination during the later stages of development.  相似文献   

8.
The influence of abscisic acid (ABA) on the precocious germinationand storage protein production of pea seeds has been examinedusing embryo and pod culture. The precocious germination ofembryos in culture could not be inhibited fully by ABA on apermissive medium (2% sucrose) even at 0.1 mol m–3. However,increasing the sucrose concentration to 5% caused near completeinhibition when ABA was added to the medium. Embryos of differentweights cultured on a high osmoticum (mannitol-containing medium),equivalent to 10% sucrose, did not show any consistent differencein ABA content. When fluridone was added to a non-permissiveculture medium, no decrease in ABA content of the embryos couldbe observed and no precocious germination was induced. In contrast,fluridone was able to prevent the accumulation of ABA in seedspresent in pods cultured in its presence from an early stageof development. These seeds, however, grew normally and reachedmaturity, did not germinate precociously in vivo, were desiccationtolerant and still produced storage protein message whetheror not ABA was included in the culture medium. It does not appear,therefore, that ABA regulates normal development or storageprotein synthesis in pea embryos. Key words: Abscisic acid, peas, Pisum sativum, seed development  相似文献   

9.
10.
Fluridone, an inhibitor of abscisic acid (ABA) biosynthesis, strongly stimulated rooting of nodal stem segments of potato (Solanum tuberosum L.) cultivar Arran Banner cultured in darkness on tuberisation medium. Inclusion of 10-6 M ABA in the culture medium prevented this rooting response, indicating that root proliferation in the presence of fluridone could be due to inhibition of ABA synthesis. The rooting response to fluridone (increased total root number and root fresh weight) was obtained only at high sucrose concentrations (0.175 and 0.234 M) and was demonstrated with two potato cultivars and two culture media; one which favoured tuberisation and one which did not. Shoot numbers were also increased, but to a lesser extent than root numbers, and total fresh weight of plant material per culture was greatly increased by inclusion of both fluridone (10-6 or 10-5 M) and 0.234 M sucrose in the culture medium. The role of sucrose was not simply osmotic because when the osmolarity of fluridone medium was increased using mixtures of mannitol and sucrose, no root proliferation occurred unless sucrose predominated in the mixture.  相似文献   

11.
Low efficiency of embryo maturation, germination and conversion to plantlets is a major problem in many species including Persian walnut. We studied the effects of abscisic acid (ABA) and sucrose, on the maturation and germination of Persian walnut (Juglans regia) somatic embryos. Individual globular somatic embryos were grown on a maturation medium supplemented with different combinations of ABA and sucrose for ca. 1 month, until shoot meristems and radicles had developed. White and opaque embryos in late cotyledonary stage were subjected to desiccation after the culture period on maturation media. The number of germinated somatic embryos was influenced by the concentrations of ABA in the maturation medium. The best treatment for germination, in which both shoot and root were developed contained 2 mg l−1 ABA and resulted in 41% conversion of embryos into plantlets. Regeneration was reduced at higher levels of ABA. While ABA always reduced the rate of secondary embryogenesis, treatments containing 4.0% sucrose significantly increased the number of secondary embryos. On the other hand, sucrose had little influence on maturation. Normal and abnormal embryos were verified anatomically.  相似文献   

12.
Developing seeds of alfalfa (Medicago sativa L.) acquire the ability to germinate during the latter stages of development, the maturation drying phase. Isolated embryos placed on Murashige and Skoog medium germinate well during early and late development, but poorly during mid-development; however, when placed on water they germinate well only during the latter stage of development. Germination of isolated embryos is very slow and poor when they are incubated in the presence of surrounding seed structures (the endosperm or seed coat) taken from the mid-development stages. This inhibitory effect is also achieved by incubating embryos in 10?5 M abscisic acid (ABA). Endogenous ABA attains a high level during mid-development, especially in the endosperm. Seeds developing in pods treated with fluridone (1-methyl-3-phenyl-5[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone) contain low levels of ABA during mid-development, and the endosperm and seed coat only weakly inhibit the germination of isolated embryos. However, intact seeds from fluridone-treated pods do not germinate viviparously, which is indicative that ABA alone is not responsible for maintaining seeds in a developing state. Application of osmoticum (e.g. 0.35 M sucrose) to isolated developing embryos prevents their germination. Also, in the developing seed in situ the osmotic potential is high. Thus internal levels of osmoticum may play a role in preventing germination of the embryo and maintaining development. Abscisic acid and osmoticum impart distinctly different metabolic responses on developing embryos, as demonstrated by their protein-synthetic capacity. Only in the presence of osmoticum do embryos synthesize proteins which are distinctly recognizable as those synthesized by developing embryos in situ, i.e. when inside the pod. Abscisic acid induces the synthesis of a few unique proteins, but these arise even in mature embryos treated with ABA. Thus while both osmoticum and ABA prevent precocious germination, their effects on the synthetic capacity of the developing embryo are quite distinct. Since seeds with low endogenous ABA do not germinate, osmotic regulation may be the more important of these two factors in controlling seed development.  相似文献   

13.
Euonymus alatus (Thunb.) Sieb. is a popular landscape plant in the United States due to its brilliant red fall foliage. It is also an important ornamental plant in many other areas of the world such as China, Japan and Europe. However, E. alatus is considered as a highly invasive plant species in the US. Mutation breeding can be used to create sterile, non-invasive cultivars. Seeds are the most commonly used explants for mutagen treatments, but E. alatus mature seeds possess prolonged dormancy and only a low percentage of them germinate even after 18?months of cold stratification. Here we report an immature embryo culture method for E. alatus ??Compactus?? to circumvent the seed dormancy problem. Also, we have found that activated charcoal, gibberellic acid (GA3) and 6-benzyladenine (BA) can reduce the dormancy of isolated embryos, which suggests that abscisic acid (ABA) might play a role in controlling seed dormancy. We have further demonstrated that exogenous ABA enhances dormancy of isolated E. alatus embryos while fluridone, an inhibitor for ABA biosynthesis, can effectively break their dormancy. These results, particularly the effect of fluridone, suggest that continuous ABA biosynthesis plays an important role in controlling the dormancy of E. alatus seeds.  相似文献   

14.
Freezing tolerance was induced in microspore derived embryos of winter Brassica napus cv. Jet neuf by the addition of ABA or mefluidide to the culture media during embryogenesis. Survival after freezing was estimated by culture of frozen-thawed embryos to plantlets. A higher freezing tolerance (50% survival at –15°C) was induced when 50 M ABA or 3.2 M mefluidide was incorporated initially into the medium during embryogenesis at 25°C followed by culture at 2°C for 3 weeks. When embryos were induced in the absence of ABA or mefluidide and maintained at 2°C for even as long as 12 weeks a lower degree of freezing tolerance (10% survival at –15°C) was obtained. Plants regenerated from embryos hardened maximally by a combination of either ABA or MFD with low temperature did not require further vernalization for flowering.Abbreviations ABA abscisic acid - MFD mefluidide - 2,4-D 2,4-dichlorophenoxyacetic acid - LT50 killing temperature for 50% of the embryos  相似文献   

15.
16.
To investigate the role of abscisic acid (ABA) biosynthesis and catabolism in dormant imbibed seeds of western white pine (Pinus monticola), ABA and selected catabolites were measured during a combined treatment of the ABA biosynthesis inhibitor fluridone, and gibberellic acid (GA). Fluridone in combination with GA effectively disrupted ABA homeostasis and replaced the approximately 90-day moist chilling period normally required to break dormancy in this species. Individually, both fluridone and GA treatments decreased ABA levels in the embryos and megagametophytes of white pine seeds compared to a water control; however, combined fluridone/GA treatment, the only treatment to terminate dormancy effectively, led to the greatest decline in ABA content. Fluridone treatments revealed that a high degree of ABA turnover/transport occurred in western white pine seeds during the initial stages of dormancy maintenance; at this time, ABA levels decreased by approximately two-thirds in both embryo and megagametophyte tissues. Gibberellic acid treatments, both alone and in combination with fluridone, suggested that GA acted transiently to disrupt ABA homeostasis by shifting the ratio between biosynthesis and catabolism to favor ABA catabolism or transport. Increases in phaseic acid (PA) and dihydrophaseic acid (DPA) were observed during fluridone/GA treatments; however, increases in ABA metabolites did not account for the reduction in ABA observed; additional catabolism and/or transport of ABA and selected metabolites in all probability accounts for this discrepancy. Finally, levels of 7′ hydroxy-ABA (7′OH-ABA) were higher in dormant-imbibed seeds, suggesting that metabolism through this pathway is increased in seeds that maintain higher levels of ABA, perhaps as a means to further regulate ABA homeostasis.  相似文献   

17.
Summary The effects of sucrose concentration in the maturation medium in combination with a heat shock treatment at 36°C were investigated in an attempt to improve the vigor of seedlings grown from dry somatic embryos of alfalfa (Medicago sativa L.). Callus was formed from petiole expiants and dispersed in liquid suspension medium in the presence of 5 M 2,4-D. The cell suspension was sieved to synchronize embryo development. The 200 – 500 m fraction was plated on embryo development medium without 2,4-D, grown for 14 days, and transferred to maturation medium. With 3% sucrose in the maturation medium, the somatic embryos germinated precociously and were unable to survive desiccation. At higher sucrose concentrations, germination was delayed and the embryos continued to accumulate dry matter. After 13 days on 6% sucrose medium (27 days after sieving), the somatic embryos were tolerant of drying to 12% moisture without exposure to exogenous ABA. Heat shock, which presumably stimulates endogenous ABA synthesis, improved the desiccation tolerance of somatic embryos if applied prior to day 27 after sieving, but its effects were minimal after day 27. High sucrose concentrations up to 9% in the maturation medium were optimal during the first 8 days on maturation medium (days 14 to 22 after sieving), but a lower concentration (6%) was optimal during the later stages of embryo maturation (days 22 to 30 after sieving). The inclusion of 10–5 M ABA in the maturation medium with 6% sucrose further improved embryo quality if applied approximately 20 days after sieving.  相似文献   

18.
Abscisic Acid and its relationship to seed filling in soybeans   总被引:30,自引:10,他引:20       下载免费PDF全文
The effect of exogenous abscisic acid (ABA) on the rate of sucrose uptake by soybean (Glycine max L. Merr.) embryos was evaluated in an in vitro system. In addition, the concentrations of endogenous ABA in seeds of three soybean Plant Introduction (PI) lines, differing in seed size, were commpared to their seed growth rates. ABA (10−7 molar) stimulated in vitro sucrose uptake in soybean (cv `Clay') embryos removed from plants grown in a controlled environment chamber, but not in embryos removed from field-grown plants of the three PI lines. However, the concentration of ABA in seeds of the three field-grown PI lines correlated well with their in situ seed growth rates and in vitro [14C] sucrose uptake rates.

Across genotypes, the concentration of ABA in seeds peaked at 8.5 micrograms per gram fresh weight, corresponding to the time of most rapid seed growth rate, and declined to 1.2 micrograms per gram at physiological maturity. Seeds of the large-seeded genotype maintained an ABA concentration at least 50% greater than that of the small-seeded genotype throughout the latter half of seed filling. A higher concentration of ABA was found in seed coats and cotyledons than in embryonic axes. Seed coats of the large-seeded genotype always had a higher concentration of ABA than seed coats of the small-seeded line. It is suggested that this higher concentration of ABA in seed coats of the large-seeded genotype stimulates sucrose unloading into the seed coat apoplast and that ABA in cotyledons may enhance sucrose uptake by the cotyledons.

  相似文献   

19.
Embryogenic masses (EMSes) of pistachio (Pistacia vera L.) were proliferated in liquid Murashige and Skoog (MS) medium without growth regulators. To determine the effects of benzylaminopurine (BAP), racemic (±) abscisic acid (ABA) and sucrose treatments during maturation on the subsequent germination and plantlet regeneration, clusters of mature somatic embryos were transferred from maturation medium onto the surface of 0.7% agar-solidified Murashige and Skoog medium. Neither germination nor plantlet development medium contained BAP or ABA. Germination studies were carried out using 80 somatic embryos at every combination of four sucrose concentrations, three maturation periods and either five concentrations of BAP or four of ABA, and the numbers germinating were recorded after four durations of culture. A similar experimental plan was used to study plantlet regeneration. The number of germinated somatic embryos increased markedly with duration of the culture on germination medium, and was influenced by the concentrations of BAP or ABA in the maturation medium; the concentration of sucrose in this medium had little influence. Plantlet regeneration also increased with culture duration and was reduced at the highest levels of BAP or ABA; with ABA, the probability of plantlet regeneration was lower for longer maturation periods. ABA and BAP have similar effects on somatic embryo germination (except at the highest levels used), but BAP is superior to ABA for promoting subsequent plantlet regeneration. Linear logistic models were used to investigate the significance of the treatments, and to estimate the optimum conditions for germination and plantlet regeneration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Background and Aims Dormancy in Lolium rigidum (annual ryegrass) seeds can be alleviated by warm stratification in the dark or by application of fluridone, an inhibitor of plant abscisic acid (ABA) biosynthesis via phytoene desaturase. However, germination and absolute ABA concentration are not particularly strongly correlated. The aim of this study was to determine if cytokinins of both plant and bacterial origin are involved in mediating dormancy status and in the response to fluridone.Methods Seeds with normal or greatly decreased (by dry heat pre-treatment) bacterial populations were stratified in the light or dark and in the presence or absence of fluridone in order to modify their dormancy status. Germination was assessed and seed cytokinin concentration and composition were measured in embryo-containing or embryo-free seed portions.Key Results Seeds lacking bacteria were no longer able to lose dormancy in the dark unless supplied with exogenous gibberellin or fluridone. Although these seeds showed a dramatic switch from active cytokinin free bases to O-glucosylated storage forms, the concentrations of individual cytokinin species were only weakly correlated to dormancy status. However, cytokinins of apparently bacterial origin were affected by fluridone and light treatment of the seeds.Conclusions It is probable that resident microflora contribute to dormancy status in L. rigidum seeds via a complex interaction between hormones of both plant and bacterial origin. This interaction needs to be taken into account in studies on endogenous seed hormones or the response of seeds to plant growth regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号