首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Parasite DNA amplified by PCR from blood of 73 chagasic children and adults of two endemic areas of Chile were studied by Southern blot and/or dot blot hybridization analysis with a panel of three minicircle probes corresponding to the parasite genotypes (clonets 19, 33 and 39). The hybridization pattern of the PCR positive samples identified clonets 39, 19/20, and 32/33 with frequencies of 0.84, 0.32 and 0.26, respectively. A total of 31 samples corresponded to mixed infections. The most frequently found mixtures were: clonets 39 and 19/20 (14 cases), followed by clonets 39 and 32/33 (8 cases), clonets 39, 32/33 and 19/20 (8 cases), and clonets 32/33 and 19/20 (1 case). Amplified DNA from 9 cases showed no hybridization signal with none of the three studied probes indicating that other genotypes different to the ones mentioned are circulating in humans, but that the clonets used as probes are the most prevalent ones in terms of transmission in the endemic areas studied. A biological characterization of 34 T. cruzi populations isolated from the xenodiagnosis of the patients was performed on an experimental murine model. The biochemical characterization of the parasite populations by molecular karyotype determined that the most frequent parasite isolated from patients belongs to clonet 39.  相似文献   

2.
A set of 65 Trypanosoma cruzi stocks from dogs, opossums, insect vectors and humans was isolated in a geographically restricted endemic area for Chagas' disease in Argentina and was analysed by multilocus enzyme electrophoresis for 15 loci. The results show that at least five multilocus genotypes (clonets) circulate in the study area, one belonging to T. cruzi IIe, one to T. cruzi IId and three clonets belonging to T. cruzi I; and they confirm the presence of these lineages in the country. The three clonets attributed to T. cruzi I were identical to each other for all loci except for Sod-2, where three different patterns were identified. These patterns suggest the presence of two homozygous genotypes and one heterozygous genotype. Our results also suggest association of clonet IIe with dogs, clonet IId with humans and the three T. cruzi I clonets with Didelphis albiventris. On the other hand, there was no significant association between Triatoma infestans and any particular clonet circulating in the area. These findings are consistent with the hypothesis of natural selection, from mixed populations of T. cruzi in vectors, toward more restricted populations in mammals. The epidemiological implications of the possible selection of different clonets by different mammal hosts and the significance of two homozygous genotypes and one heterozygous genotype for the Sod-2 locus are discussed.  相似文献   

3.
The biological characterization of bloodstream forms of eleven Trypanosoma cruzi cloned stocks, corresponding to two genetically similar clonets (19 and 20) and one distant clonet (39), according to multilocus enzyme electrophoresis analysis, showed dissimilar parasitemia in an experimental isogenic mouse model. While clonet 39 stocks gave low parasitemias, clonets 19 or 20 stocks gave high parasitemias, independently of the inocula (10(2) and 10(4) bloodstream forms) used. High parasitemia did not always associate with greater mortality. Statistical studies on mortality using a low inocula showed significantly higher mortality with clonet 39 stocks when compared to clonets 19 or 20 stocks. Finally, in order to confirm the identity of each stock studied, typing by molecular karyotype was performed before inoculating mice.  相似文献   

4.
Monitored biclonal densities of parasites were offered to third-stage larvae of Triatoma infestans via an artificial feeding device and 30 days later, the gut contents of the insects were processed for microscopic examination and polymerase chain reaction (PCR) detection of Trypanosoma cruzi kinetoplast DNA [kDNA]). A total of 15 mixtures involving nine different stocks attributed to the 19/20, 32 and 39 major clonal genotypes of Trypanosoma cruzi were used. The presence of each T. cruzi clonal genotype after completion of the cycle through the insects was investigated by hybridising the PCR amplification products with genotype-specific minicircle kDNA probes. Sixty-five out of 90 examined insects (72.2%) were positive for parasites by microscopic examination and 85 (94.4%) were positive by PCR. The results show that almost half of the biclonal infections are not detectable after completion of the cycle, and that there are important differences in detection of such biclonal infections according to the clonal genotypes considered. Moreover, elimination of a clonal genotype by another is a frequent, but not constant, pattern in biclonal infections of T. infestans. The use of PCR and kDNA probes makes it possible to avoid the culture phase, which makes detection of mixed infections much easier in epidemiological surveys. Moreover, the fact that T. infestansdoes not transmit different T. cruzi clonal genotypes with the same efficiency has strong implications for the reliability of xenogiagnosis.  相似文献   

5.
A cross section of a human population (501 individuals) selected at random, and living in a Bolivian community, highly endemic for Chagas disease, was investigated combining together clinical, parasitological and molecular approaches. Conventional serology and polymerase chain reaction (PCR) indicated an active transmission of the infection, a high seroprevalence (43.3%) ranging from around 12% in < 5 years to 94.7% in > 45 years, and a high sensitivity (83.8%) and specificity of PCR. Abnormal ECG tracing was predominant in chagasic patients and was already present among individuals younger than 13 years. SAPA (shed acute phase antigen) recombinant protein and the synthetic peptide R-13 were used as antigens in ELISA tests. The reactivity of SAPA was strongly associated to Trypanosoma cruzi infection and independent of the age of the patients but was not suitable neither for universal serodiagnosis nor for discrimination of specific phases of Chagas infection. Anti-R-13 response was observed in 27.5% only in chagasic patients. Moreover, anti-R13 reactivity was associated with early infection and not to cardiac pathology. This result questioned previous studies, which considered the anti-R-13 response as a marker of chronic Chagas heart disease. The major clonets 20 and 39 (belonging to Trypanosoma cruzi I and T. cruzi II respectively) which circulate in equal proportions in vectors of the studied area, were identified in patients' blood by PCR. Clonet 39 was selected over clonet 20 in the circulation whatever the age of the patient. The only factor related to strain detected in patients' blood, was the anti-R-13 reactivity: 37% of the patients infected by clonet 39 (94 cases) had anti-R13 antibodies contrasting with only 6% of the patients without clonet 39 (16 cases).  相似文献   

6.
Homologies of minicircle kDNA of 27 Mexican stocks were studied by cross-hybridization with four kDNA probes derived from three reference stocks belonging to groups Trypanosoma cruzi I (SO34 cl4 and Silvio) and T. cruzi II (MN) and one Mexican stock. High homologies were only observed with Silvio (six stocks) and Mexican probes (11 stocks). After 30 min exposure (low homology) additional stocks were recognized with SO34 cl4 (three stocks) and Silvio (six stocks) probes; with the Mexican probe only five stocks remained non-reactive. All the stocks were typed by isoenzyme (16 loci) and Mexican stocks belonged to T. cruzi I. Hybridization patterns were not strictly correlated with the observed clustering and cross-hybridization of kDNA minicircles is not available to distinct Mexican stocks.  相似文献   

7.
ABSTRACT. Total or kinetoplast DNA (kDNA) from 72 isolates and clones of Trypanosoma cruzi as well as from nine related trypanosomatids were analyzed by dot hybridization using nonradioactive kDNA or cloned minicircle fragments as probes. Biotinylated-kDNA probes generated by nick-translation proved reliable for distinguishing Zymodeme 1 and Zymodeme 2bol of T. cruzi parasites. In contrast, digoxigenin-labeled kDNA obtained by random-priming did not distinguish among T. cruzi isolates but did distinguish among New World leishmanias. Cloned minicircle fragments labeled with digoxigenin gave the same results as digoxigenin-labeled kDNA, except for a 10-fold decrease in sensitivity. Digoxigenin-labeled DNA probes proved useful in unambiguously detecting T. cruzi from different geographic regions of America. However, T. rangeli and T. cruzi marinkellei were not distinguished by these probes.  相似文献   

8.
Twenty one Trypanosoma cruzi stocks from humans, domiciliary triatomines and one sylvatic animal of different areas of Paraguay were subjected to isoenzyme analysis. Thirteen enzyme systems (15 loci in total) were studied. MN cl2 (clonets 39) and SO34 cl4 (clonets 20) were used as references. Relationships between stocks were depicted by an UPGMA dendrogram constructed using the Jaccard's distances matrix. Among the Paraguayan stocks 14 zymodemes were identified (Par1 to Par14), Par 5 being the most frequent. Polymorphism rate and clonal diversity were 0.73 and 0.93, respectively. Average number of alleles per polymorphic locus was 2.5 (range 2-4). These measurements show a high diversity, which is confirmed by the dendrogram topology. All stocks belong to the same lineage, as MN cl2 reference strain (T. cruzi II). Moreover three distinct subgroups were identified and two of them correspond to Brazilian and Bolivian zymodemes, respectively. The third subgroup, the most common in Paraguay, is related to Tulahuen stock. The large geographical distribution of some zymodemes agrees with the hypothesis of clonality for T. cruzi populations. However sample size was not adequate to detect genetic recombination in any single locality.  相似文献   

9.
Total or kinetoplast DNA (kDNA) from 72 isolates and clones of Trypanosoma cruzi as well as from nine related trypanosomatids were analyzed by dot hybridization using nonradioactive kDNA or cloned minicircle fragments as probes. Biotinylated-kDNA probes generated by nick-translation proved reliable for distinguishing Zymodeme 1 and Zymodeme 2bol of T. cruzi parasites. In contrast, digoxigenin-labeled kDNA obtained by random-priming did not distinguish among T. cruzi isolates but did distinguish among New World leishmanias. Cloned minicircle fragments labeled with digoxigenin gave the same results as digoxigenin-labeled kDNA, except for a 10-fold decrease in sensitivity. Digoxigenin-labeled DNA probes proved useful in unambiguously detecting T. cruzi from different geographic regions of America. However, T. rangeli and T. cruzi marinkellei were not distinguished by these probes.  相似文献   

10.
Analysis of zymograms of extracts of Trypanosoma cruzi isolated from different hosts in Argentina allowed characterization of 12 zymodemes or "isozymic strains," only six of which were found in human patients. Two of these six zymodemes (Z1 and Z12) were widely distributed and found in more than 80% of human patients. These two "major natural clones" differed significantly in pathogenic activity. Because the groupings obtained by studying enzymes and kinetoplast DNA (kDNA) were similar, it is possible to identify the zymodeme by analyzing kDNA. A 290-bp fragment was amplified by PCR using primers for the sequences flanking the hypervariable regions of kDNA minicircles. Labeled probes for this fragment, prepared from Z1 and Z12 reference stocks, hybridized specifically with PCR-amplified kDNA from parasite stocks, allowing identification of zymodemes.  相似文献   

11.
The kinetoplast DNA (kDNA) minicircle molecules of 14 Brazilian stocks of Trypanosoma evansi were studied by morphological approaches (Giemsa and 4'-6'-diamidino-2-phenylindole staining and transmission electron microscopy) and molecular approaches (probing with an oligonucleotide complementary to the minicircle origin of replication and polymerase chain reaction amplification of a minicircle sequence). All methods indicated the absence of both a typical kinetoplast and kDNA minicircles, even in a very small number of parasites of a single stock or in small numbers of copies of molecules per cell. We did not detect any altered kDNA molecules. There were no kDNA molecules in either old or new stocks of T. evansi maintained by successive passages in mice. Similarly, no kDNA minicircles were detected in trypanosomes in blood smears from naturally infected domestic and wild animals. Thus, the total absence of kDNA in Brazilian stocks of T. evansi from both domestic and wild mammals is probably the natural state of Brazilian T. evansi.  相似文献   

12.
For the detection of six groups of anaerobic bacteria in human feces, we designed seven new 16S rRNA-based oligonucleotide probes. This set of probes extends the current set of probes and gives more data on the composition of the human gut flora. Probes were designed for Phascolarctobacterium and relatives (Phasco741), Veillonella (Veil223), Eubacterium hallii and relatives (Ehal1469), Lachnospira and relatives (Lach571), and Eubacterium cylindroides and relatives (Ecyl387), and two probes were designed for Ruminococcus and relatives (Rbro730 and Rfla729). The hybridization conditions for the new probes were optimized for fluorescent in situ hybridization, and the probes were validated against a set of reference organisms. The probes were applied to fecal samples of 11 volunteers to enumerate their target bacterial groups. The Phasco741 and Veil223 probes both detected average numbers below 1% of the total number of bacteria as determined with the bacterial kingdom-specific Bact338 probe. The Ecyl387 probe detected about 1.4%, the Lach571 and Ehal1469 probes detected 3.8 and 3.6%, respectively, and a combination of the Rbro730 and Rfla729 probes detected 10.3%. A set of 15 probes consisting of probes previously described and those presented here were evaluated in hybridization with the fecal samples of the same volunteers. Together, the group-specific probes detected 90% of the total bacterial cells.  相似文献   

13.
Parasites belonging to Leishmania braziliensis, Leishmania donovani, Leishmania mexicana complexes and Trypanosoma cruzi (clones 20 and 39) were searched in blood, lesions and strains collected from 28 patients with active cutaneous leishmaniasis and one patient with visceral leishmaniasis. PCR-hybridization with specific probes of Leishmania complexes (L. braziliensis, L. donovani and L. mexicana) and T. cruzi clones was applied to the different DNA samples. Over 29 patients, 8 (27.6%) presented a mixed infection Leishmania complex species, 17 (58.6%) a mixed infection Leishmania-T. cruzi, and 4 (13.8%) a multi Leishmania-T. cruzi infection. Several patients were infected by the two Bolivian major clones 20 and 39 of T. cruzi (44.8%). The L. braziliensis complex was more frequently detected in lesions than in blood and a reverse result was observed for L. mexicana complex. The polymerase chain reaction-hybridization design offers new arguments supporting the idea of an underestimated rate of visceral leishmanisis in Bolivia. Parasites were isolated by culture from the blood of two patients and lesions of 10 patients. The UPGMA (unweighted pair-group method with arithmetic averages) dendrogram computed from Jaccard's distances obtained from 11 isoenzyme loci data confirmed the presence of the three Leishmania complexes and undoubtedly identified human infections by L. (V.) braziliensis, L. (L.) chagasi and L. (L.) mexicana species. Additional evidence of parasite mixtures was visualized through mixed isoenzyme profiles, L. (V.) braziliensis-L. (L.) mexicana and Leishmania spp.-T. cruzi.The epidemiological profile in the studied area appeared more complex than currently known. This is the first report of parasitological evidence of Bolivian patients with trypanosomatidae multi infections and consequences on the diseases' control and patient treatments are discussed.  相似文献   

14.
Herein, we have analyzed major biological properties following dual-clone Trypanosoma cruzi infections in BALB/c mice. Eight T. cruzi clonal stocks, two of each principal genotype, including genotype 19 and 20 (T. cruzi I), hybrid genotype 39 (T. cruzi) and 32 (T. cruzi II) were combined into 24 different dual-clone infections. Special attention was given to characterize biological parameters assayed including: prepatent period, patent period, maximum of parasitemia, day of maximum parasitemia, area under the parasitemia curve, infectivity, mortality, and hemoculture positivity. Our findings clearly demonstrated that features resultant of dual-clone infections of T. cruzi clonal stocks did not display either the characteristics of the corresponding monoclonal infections or the theoretical mixture based on the respective monoclonal infections. Significant changes in the expected values were observed in 4.2-79.2% of the mixtures considering the eight biological parameters studied. A lower frequency of significant differences was found for mixtures composed by phylogenetically distant clonal stocks. Altogether, our data support our hypothesis that mixed T. cruzi infections have a great impact on the biological properties of the parasite in the host and re-emphasizes the importance of considering the possible occurrence of natural mixed infections in humans and their consequences on the biological aspects of ongoing Chagas' disease.  相似文献   

15.
A simple, inexpensive procedure for preparing pure kinetoplast DNA network from Leishmania donovani is described. L. donovani promastigotes were lysed by incubating with pronase in presence of sodium dodecylsulfate. Crude kinetoplast DNA networks were obtained by centrifugation of the lysate through a 20% sucrose solution. The pellet containing kinetoplast DNA was deproteinized by phenol extraction. Contaminating nuclear DNAs were removed by denaturation with alkali, neutralization, and addition of polyethylene glycol-8000 to a concentration of 10% to facilitate precipitation of kinetoplast DNA. kDNA isolated after centrifugation was deproteinized several times with phenol and finally precipitated with ethanol. The average yield by this procedure is 30-50 micrograms of kDNA per gram of wet cells. By slot-blot hybridization with a nuclear DNA probe, no nuclear DNA contamination of the kDNA networks could be detected.  相似文献   

16.
Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.  相似文献   

17.
18.
In situ hybridization on cultured promastigotes and sandfly smears were performed with nonradioactively labeled total DNA and recombinant DNA probes containing minicircle kinetoplast DNA (kDNA) or nuclear DNA inserts. Total DNA probes lack specificity whereas recombinant nuclear DNA probes work only if they contain repetitive sequences. Minicircle kDNAs of five Leishmania isolates, representative of five Leishmania taxa found in Kenya, were sequenced. Comparison of the sequences showed a 150-bp region with around 80% homology, whereas the rest of the minicircles had about 50% homology. Nevertheless, application of these probes in in situ hybridization assays as tested on Leishmania promastigotes in the vector gave good specificity and hybridization signal. Two types of labeling were tested: incorporation of biotin-labeled dUTP or directly horseradish peroxidase (HRP)-labeled nucleotides. Both techniques provided good sensitivity and signal-to-noise ratio on cultured promastigotes. Hybridization with HRP-labeled kDNA probes gave a superior signal-to-noise ratio if tested on sandfly preparations. This method provided a reliable and fast identification and facilitated the detection of promastigotes in sandflies. The technique presented here may be helpful in rapid identification of Leishmania promastigotes, and thus make epidemiological studies easier and less time consuming.  相似文献   

19.
For the detection of six groups of anaerobic bacteria in human feces, we designed seven new 16S rRNA-based oligonucleotide probes. This set of probes extends the current set of probes and gives more data on the composition of the human gut flora. Probes were designed for Phascolarctobacterium and relatives (Phasco741), Veillonella (Veil223), Eubacterium hallii and relatives (Ehal1469), Lachnospira and relatives (Lach571), and Eubacterium cylindroides and relatives (Ecyl387), and two probes were designed for Ruminococcus and relatives (Rbro730 and Rfla729). The hybridization conditions for the new probes were optimized for fluorescent in situ hybridization, and the probes were validated against a set of reference organisms. The probes were applied to fecal samples of 11 volunteers to enumerate their target bacterial groups. The Phasco741 and Veil223 probes both detected average numbers below 1% of the total number of bacteria as determined with the bacterial kingdom-specific Bact338 probe. The Ecyl387 probe detected about 1.4%, the Lach571 and Ehal1469 probes detected 3.8 and 3.6%, respectively, and a combination of the Rbro730 and Rfla729 probes detected 10.3%. A set of 15 probes consisting of probes previously described and those presented here were evaluated in hybridization with the fecal samples of the same volunteers. Together, the group-specific probes detected 90% of the total bacterial cells.  相似文献   

20.
A hydrophobic grid membrane filtration (HGMF) colony hybridization assay was developed that allows strain-specific differentiation of defined bacterial populations. The randomly amplified polymorphic DNA (RAPD) fingerprinting technique was used to identify potential signature nucleic acid sequences unique to each member of a commercial cheese starter culture blend. The blend consisted of two closely related Lactococcus lactis subsp. cremoris strains, 160 and 331, and one L. lactis subsp. lactis strain, 210. Three RAPD primers (OPX 1, OPX 12, and OPX 15) generated a total of 32 products from these isolates, 20 of which were potential strain-specific markers. Southern hybridization analyses revealed, that the RAPD-generated signature sequences OPX15-0.95 and a 0.36-kb HaeIII fragment of OPX1-1.0b were specific for strains 331 and 210, respectively, within the context of the test starter culture blend. These strain-specific probes were used in a HGMF colony hybridization assay. Colony lysis, hybridization, and nonradioactive detection parameters were optimized to allow specific differentiation and quantitation of the target strains in the mixed starter culture population. When the 210 and 331 probes were tested at their optimal hybridization temperatures against single cultures, they detected 100% of the target strain CFUs, without cross-reactivity to the other strains. The probes for strains 210 and 331 also successfully detected their targets in blended cultures even with a high background of the other two strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号