首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of 25-hydroxyvitamin D-3 24-hydroxylase by 1,25-dihydroxyvitamin D-3 and synthetic human parathyroid hormone fragment 1–34 (PTH1–34) was investigated using a cloned monkey kidney cell line, JTC-12. Treatment of the cells with 1,25-dihydroxyvitamin D-3 markedly enhanced the conversion of [3H]-25-hydroxyvitamin D-3 into a more polar metabolite. The metabolite was identified as 24,25-dihydroxyvitamin D-3 by normal phase and reverse phase high-performance liquid chromatography and periodate oxidation. The 24-hydroxylae activity appeared to follow Michaelis-Menten kintics, and 1,25-dihydroxyvitamin D-3 treatment increased the Vmax of 24-hydroxylase from 33 to 95 pmol/h per 106 cells without affecting the apparent Km value of the enzyme (220 nM in control vs. 205 nM in 1,25-dihydroxyvitamin D-3 treated cells). The enzyme activity reached a maximum between 4 and 8 h of treatment with 1,25-dihydroxyvitamin D-3. The dose of 1,25-dihydroxyvitamin D-3 required to cause a half-maximal stimulation was about 3 · 10?10 M. The 1,25-dihydroxyvitamin D-3-induced increase in 24-hydroxylase was almost completely inhibited by the presence of 1 μM cycloheximide. Treatment of the cells with PTH1–34 caused a dose-dependent increase in cyclic AMP production. Half-maximal stimulation of cyclic AMP production was obtained at about 5 · 10?9 M PTH1–34. When 2.4 · 10?9 M PTH1–34 was added after 1,25-dihydroxyvitamin D-3 treatment, the 1,25-dihydroxyvitamin D-3-stimulated 24-hydroxylase was inhibited to 70.7 ± 2.9% of control. Higher concentrations of PTH1–34 caused less inhibition of the enzyme activity. When cyclic AMP was added instead of PTH1–34, the enzyme activity was also suppressed significantly. These results indicate that, in JTC-12 cells, 1,25-dihydroxyvitamin D-3 stimulates 24-hydroxylase in a dose- and time-dependent manner by increasing the Vmax of the enzyme through a mechanism dependent upon new protein synthesis, and suggest that PTH1–34 inhibits the 1,25-dihydroxyvitamin D-3-induced stimulation of 24-hydroxylase through its effect on cyclic AMP production.  相似文献   

2.
1,25-Dihydroxyvitamin D3 induces both 25-hydroxyvitamin D3- and 1,25-dihydroxyvitamin D3- 24-hydroxylase activities. However, whether 24-hydroxylation of these substrates is catalyzed by a single enzyme is unknown. We have examined the substrate specificity of the enzyme using the solubilized and reconstituted chick renal mitochondrial 24-hydroxylase enzyme system. The soluble enzyme catalyzes 24-hydroxylation of both substrates. The apparent Km of the 24-hydroxylase for 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 were 1.47 and 0.14 microM, respectively. Kinetic studies demonstrated that 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 act as competitive inhibitors with respect to each other. 1,25-Dihydroxyvitamin D3 inhibited the production of 24,25-dihydroxyvitamin D3 with an apparent Ki of 0.09 microM and 25-hydroxyvitamin D3 inhibited the production of 1,24,25-trihydroxyvitamin D3 with an apparent Ki of 3.9 microM. These results indicate that chick 24-hydroxylase preferentially hydroxylates 1,25-dihydroxyvitamin D3 and support the idea that the 24-hydroxylation of these substrates is catalyzed by a single enzyme.  相似文献   

3.
1,25-Dihydroxyvitamin D3 induces the human promyelocyte leukemia cell line, HL-60, to differentiate into macrophages/monocytes via a steroid-receptor mechanism. This system is a relevant one for an investigation of the molecular mechanism of 1,25-dihydroxyvitamin D3. We have now examined the effect of 1,25-dihydroxyvitamin D3 on the induction of 1,25-dihydroxyvitamin D3- and 25-hydroxyvitamin D3-24-hydroxylase activities in HL-60 cells. The hydroxylase activities were measured by a periodate-based assay, which was validated by comparison with well-established HPLC analysis. HPLC analysis also suggested that 1,25-dihydroxyvitamin D3 induces a 23-hydroxylase in addition to the 24-hydroxylase. 1,25-Dihydroxyvitamin D3- and 25-hydroxyvitamin D3-24-hydroxylase activities were stimulated as early as 4 h after the addition of 10(-7) M 1,25-dihydroxyvitamin D3 and became maximal by 24 h. 1,25-Dihydroxyvitamin D3 stimulated both activities in a dose-dependent manner up to 10(-6) M. The Km of 24-hydroxylase for 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 were 2 x 10(-8) M and 5.2 x 10(-7) M, respectively. Cycloheximide (5 microM) inhibited 1,25-dihydroxyvitamin D3-mediated stimulation of 24-hydroxylase activity. Other differentiation inducers, such as retinoic acid and phorbol ester, did not induce either activity. 1,25-Dihydroxyvitamin D3-24-hydroxylase in HL-60 mitochondria was solubilized with 0.6% cholate and reconstituted with NADPH, beef adrenal ferredoxin, and beef adrenal ferredoxin reductase, each component being essential for 24-hydroxylase activity. These results strongly suggest that the 24-hydroxylase in HL-60 cells is a three-component cytochrome P450-dependent mixed-function oxidase.  相似文献   

4.
The 24-hydroxylase is the enzyme responsible for the first step in the catabolism of 1,25-dihydroxyvitamin D3, the active form of vitamin D. This enzyme was shown to be upregulated by 1,25-dihydroxyvitamin D3 itself and downregulated by parathyroid hormone (PTH). Upregulation of 24-hydroxylase by 1,25-dihydroxyvitamin D3 has been characterized; however, the mechanism by which PTH acts to downregulate 24-hydroxylase expression remains unknown. Here we report the cloning of the porcine 24-hydroxylase, and show that 1,25-dihydroxyvitamin D3-stimulated 24-hydroxylase mRNA and activity are repressed by PTH in AOK-B50 cells, a porcine kidney proximal tubule cell line with stably transfected opossum PTH receptors. Forskolin mimicked the effects of PTH consistent with in vivo data, and suppression by PTH was not due to changes in VDR levels. The first 1400 bp of the 24-hydroxylase promoter were not able to mediate the effects of PTH on a reporter gene. In view of the above findings we concluded that AOK-B50 cells are a suitable model for further studying the mechanism of action of PTH on 24-hydroxylase mRNA.  相似文献   

5.
6.
1α-Hydroxyvitamin D-3 25-hydroxylase activity was measured in subcellular fractions of rat and human liver. The formation of 1,25-dihydroxyvitamin D-3 was determined by high pressure liquid chromatography. In rat liver 1α-hydroxyvitamin D-3 25-hydroxylase activities were found in the purified nuclei, the heavy mitochondrial fraction and the microsomal fraction. The enrichment of 25-hydroxylase activity was highest in the heavy mitochondrial fraction. With this fraction a minimum amount (about 0.5 mg) of protein was required before formation of 1,25-dihydroxyvitamin D-3 could be detected. Above this amount the reaction was linear with amount of protein up to at least 2 mg/ml. The reaction was also linear with time up to 60 min. An apparent Km value of 2·10?5 M was found. The mitochondrial 25-hydroxylase was stimulated by addition of cytosolic protein or bovine serum albumin. The degree of stimulation was dependent on the amount of mitochondrial protein present in the incubation mixture. Maximal stimulation was seen with 0.2 mg/ml of either protein in the presence of 0.5 mg mitochondrial protein. The stimulating effect remained after heating the protein for 5 min at 100°C. The cytosolic protein did not stimulate a reconstituted mitochondrial 1α-hydroxyvitamin D-3 25-hydroxylase. The mitochondrial vitamin D-3 25-hydroxylase was inhibited both by cytosolic protein and by bovine serum albumin. Human liver revealed only one 1α-hydroxyvitamin D-3 25-hydroxylase activity located to the heavy mitochondrial fraction. The results are in agreement with previous studies on the localization of vitamin D-3 25-hydroxylase in rat and human liver. The difference in localization of the 25-hydroxylase between rat and human liver implies that studies on the regulation of the microsomal 25-hydroxylase in rat liver may not be relevant to the situation in human liver.  相似文献   

7.
8.
Kidney tubules obtained from chicks fed a high-calcium low-phosphorus diet retained 25-hydroxyvitamin D3-1-hydroxylase activity after a 10 h incubation in serum-free minimum essential medium. Inclusion of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) in the medium prompted a suppression of 25-hydroxyvitamin D3-1-hydroxylase and the induction of 25-hydroxyvitamin D3-24-hydroxylase activities. The enzyme switch-over response could be prompted by 1.6 × 10?7 M 1,25-dihydroxyvitamin D3 and occurred within 6 h following treatment. Medium calcium appeared to augment the metabolite's switch-over action.  相似文献   

9.
A single 325-pmol dose of 1,25-dihydroxyvitamin D3 given to chicks fed a vitamin D-deficient diet containing 3% calcium and 0.6% phosphorus suppresses renal mitochondrial 25-hydroxyvitamin D3-1α-hydroxylase and stimulates the 25-hydroxyvitamin D3-24-hydroxylase as measured by in vitro assay. This alteration in the enzymatic activity takes place over a period of hours. The administration of parathyroid hormone rapidly suppresses the 25-hydroxyvitamin D3-24-hydroxylase. The alterations in the hydroxylases by parathyroid hormone or 1,25-dihydroxyvitamin D3 are not related to changes in serum clacium or phosphate but could be related to changes in intracellular levels of these ions. Actinomycin D or cycloheximide given in vivo reduces the 25-hydroxyvitamin D3-24-hydroxylase activity rapidly which suggests that the turnover of the enzyme and its messenger RNA is rapid (1- and 5-h half-life, respectively). The half-lives of the hydroxylases are sufficiently short to permit a consideration that the regulation by 1,25-dihydroxyvitamin D3 and parathyroid hormone may involve enzyme synthesis and degradation.  相似文献   

10.
The role of vitamin D metabolites in the regulation of hepatic 25-hydroxyvitamin D production was investigated by examining the effects of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and 24,25-dihydroxyvitamin D on the synthesis of [25-3H]hydroxyvitamin D by rachitic rat liver homogenates. Production of [25-3H]hydroxyvitamin D was inhibited by 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, but not by 24,25-dihydroxyvitamin D. 25-Hydroxyvitamin D increased the Km of the vitamin D-25-hydroxylase enzyme(s), while 1,25-dihydroxyvitamin D decreased the Vmax with a Ki of 88.7 ng/ml. Inhibition of hepatic 25-hydroxyvitamin D production by 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D may be another control mechanism to regulate circulating vitamin D levels.  相似文献   

11.
25-Hydroxylation of 1 alpha-hydroxyvitamin D-3 in rat and human liver   总被引:1,自引:0,他引:1  
1 alpha-Hydroxyvitamin D-3 25-hydroxylase activity was measured in subcellular fractions of rat and human liver. The formation of 1,25-dihydroxyvitamin D-3 was determined by high pressure liquid chromatography. In rat liver 1 alpha-hydroxyvitamin D-3 25-hydroxylase activities were found in the purified nuclei, the heavy mitochondrial fraction and the microsomal fraction. The enrichment of 25-hydroxylase activity was highest in the heavy mitochondrial fraction. With this fraction a minimum amount (about 0.5 mg) of protein was required before formation of 1,25-dihydroxyvitamin D-3 could be detected. Above this amount the reaction was linear with amount of protein up to at least 2 mg/ml. The reaction was also linear with time up to 60 min. An apparent Km value of 2 X 10(-5) M was found. The mitochondrial 25-hydroxylase was stimulated by addition of cytosolic protein or bovine serum albumin. The degree of stimulation was dependent on the amount of mitochondrial protein present in the incubation mixture. Maximal stimulation was seen with 0.2 mg/ml of either protein in the presence of 0.5 mg mitochondrial protein. The stimulating effect remained after heating the protein for 5 min at 100 degrees C. The cytosolic protein did not stimulate a reconstituted mitochondrial 1 alpha-hydroxyvitamin D-3 25-hydroxylase. The mitochondrial vitamin D-3 25-hydroxylase was inhibited both by cytosolic protein and by bovine serum albumin. Human liver revealed only one 1 alpha-hydroxyvitamin D-3 25-hydroxylase activity located to the heavy mitochondrial fraction. The results are in agreement with previous studies on the localization of vitamin D-3 25-hydroxylase in rat and human liver. The difference in localization of the 25-hydroxylase between rat and human liver implies that studies on the regulation of the microsomal 25-hydroxylase in rat liver may not be relevant to the situation in human liver.  相似文献   

12.
In UMR 106 rat osteosarcoma cells, parathormone (1-34hPTH) and calcitonin (sCT) stimulated adenylate cyclase (AC) activity 5.5-and 2.8-fold, respectively. AC in osteoblasts (OB) from collagenase-treated calvaria of 3-day-old rats responded similarly to 1-34hPTH. In contrast, fibroblasts (mouse fibroblastomas) displayed a marginal 1-34hPTH sensitive AC. Osteoclasts (OC) of collagenase-treated rat calvariae, rat monocytes and mouse macrophages did not demonstrate 1-34hPTH inducable AC activity. Physiological concentrations of 24,25-dihydroxyvitamin D-3 attenuated PTH-sensitive AC in OB and UMR 106 cells within 20 min, while 1,25-dihydroxyvitamin D-3 showed no such immediate effect. In contrast, the AC response to Gpp(NH)p was unaffected by 24,25-(OH)2D3, indicating that 24,25-(OH)2D3 interrupts the coupling of the PTH receptor to the GTP binding protein Gs. OB and UMR 106 cells were also subjected to long-term (48 h) incubation with vitamin D-3 metabolites, 1-34hPTH or 20% serum from patients with secondary hyperparathyroidism (sHBT-serum), respectively. PTH-sensitive AC was markedly attenuated by pre-exposure to both 1-34hPTH and 1,25-(OH)2D3, while minimally affected by corresponding 24,25-(OH)2D3 and 20% sHPT-serum treatment. The secretion of alkaline phosphatase (Alphos) from the two cell types was strongly increased by 1-34hPTH, the effect being abolished by the presence of 24,25-(OH)2D3. Iliac crest biopsies of normal individuals exhibited a clear negative correlation between PTH-sensitive AC and corresponding serum 24,25-(OH)2D3 levels. Basal AC activity was, however, negatively correlated to serum 1,25-(OH)2D3 concentrations. In summary, the results show that 24,25-(OH)2D3 reduces PTH-stimulated AC activity in and Alphos secretion from osteoblastic bone cells by rapidly and directly interfering with the plasma membrane. These data reinforce the probable in vivo significance of 24,25-(OH)2D3. Moreover, the negative correlation between basal AC activity and serum 1,25-(OH)2D3 levels indicates a possible role for 1,25-(OH)2D3 in regulating bone cell synthesis of AC components in vivo.  相似文献   

13.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) from its precursor, 25-dihydroxyvitamin D(3) (25(OH)D(3)), is catalyzed by the mitochondrial cytochrome P450 enzyme 25-hydroxyvitamin D(3)-1alpha-hydroxylase (1alpha-hydroxylase). It has been generally assumed that 1,25(OH)(2)D(3) inhibits the activity of this enzyme by regulating its expression at the genomic level. We confirmed that 1,25(OH)(2)D(3) reduced the apparent conversion of 25(OH)D(3) to 1,25(OH)(2)D(3) while stimulating the conversion of 1,25(OH)(2)D(3) and 25(OH)D(3) to 1,24,25(OH)(3)D(3) and 24,25(OH)(2)D(3), respectively. However, 1,25(OH)(2)D(3) failed to reduce the abundance of its mRNA or its encoded protein in human keratinocytes. Instead, when catabolism of 1,25(OH)(2)D(3) was blocked with a specific inhibitor of the 25-hydroxyvitamin D(3)-24-hydroxylase (24-hydroxylase) all apparent inhibition of 1alpha-hydroxylase activity by 1,25(OH)(2)D(3) was reversed. Thus, the apparent reduction in 1alpha-hydroxylase activity induced by 1,25(OH)(2)D(3) is due to increased catabolism of both substrate and product by the 24-hydroxylase. We believe this to be a unique mechanism for autoregulation of steroid hormone synthesis.  相似文献   

14.
Cells obtained from male quail kidneys by digestion with collagenase and hyaluronidase were plated and maintained in a chemically defined, serum-free medium. Culture dishes (35 mm) were inoculated with 1.5 . 10(6) cells which became confluent in 5 days. The cells maintained an epithelial-like morphology over the entire culture period. During a 2 h incubation the cells metabolized 25--30% of the 10 nM 25-hydroxyvitamin D-3 (25-OH-D-3) provided. Seven metabolites were chromatographically separated on Sephadex LH-20. Three have been identified as 1 alpha, 25-dihydroxyvitamin D-3 (1,25(OH)2D-3), 24,25-dihydroxyvitamin D-3 (24,25(OH)2D-3) and 1 alpha, 24,25-trihhydroxyvitamin D-3 (1,24,25(OH)3D-3). The activities of the 25-OH-D-3:1 alpha- and 24-hydroxylases increased eight times faster than the cell number in 5 days. Preincubation of the cells with 10 nM 25-OH-D-3 or 1,25(OH)2D-3 decreased 1,25(OH)2D-3 synthesis, and increased both 24,25(OH)2D-3 and metabolite IV synthesis. The decrease in 25-OH-D-3:1 alpha-hydroxylase activity required a 2 h preincubation with 25-OH-D-3, while stimulation of 25-OH-D-3:24-hydroxylase activity and metabolite IV production required a 6 h preincubation. Incubations of cells for 1 h with parathyroid hormone resulted in a 30-fold increase in cyclic AMP in the medium. A 6 h preincubation with parathyroid hormone decreased 24,25(OH)2D-3) synthesis 50% relative to control cells. These results demonstrate the amenability of this system for studying the regulation of 25-OH-D-3 metabolism, as well as its use for other in vitro studies on renal cell function in a chemically defined culture system.  相似文献   

15.
Cells obtained from male quail kidneys by digestion with collagenase and hyaluronidase were plated and maintained in a chemically defined, serum-free medium. Culture dishes (35 mm) were inoculated with 1.5 · 106 cells which became confluent in 5 days. The cells maintained an epithelial-like morphology over the entire culture period. During a 2 h incubation the cells metabolized 25–30% of the 10 nM 25-hydroxyvitamin D-3 (25-OH-D-3) provided. Seven metabolites were chromotographically separated on Sephadex LH-20. Three have been identified as 1α,25-dihydroxyvitamin D-3 (1,25(OH)2D-3), 24,25-dihydroxyvitamin D-3 (24,25(OH)2D-3) and 1α,24,25-trihhydroxyvitamin D-3 (1,24,25(OH)3D-3). The activities of the 25-OH-D-3:1α- and 24-hydroxylases increased eight times faster than the cell number in 5 days. Preincubation of the cells with 10 nM 25-OH-D-3 or 1,25(OH)2D-3 decreased 1,25(OH)2D-3 synthesis, and increased both 24,25(OH)2D-3 and metabolite IV synthesis. The decrease in 25-OH-D-3:1α-hydroxylase activity required a 2 h preincubation with 25-OH-D-3, while stimulation of 25-OH-D-3:24-hydroxylase activity and metabolite IV production required a 6 h preincubation. Incubations of cells for 1 h with parathyroid hormone resulted in a 30-fold increase in cyclic AMP in the medium. A 6 h preincubation with parathyroid hormone decreased 24,25-(OH)2D-3 synthesis 50% relative to control cells. These results demonstrate the amenability of this system for studying the regulation of 25-OH-D-3 metabolism, as well as its use for other in vitro studies on renal cell function in a chemically defined culture system.  相似文献   

16.
We have the evaluated the effect of vitamin D-3 and its metabolite 1,25-dihydroxyvitamin D-3 on Ca2+ accumulation by chick intestinal mitochondria. Ca2+ accumulation appears to occur in two phases: an early, transient accumulation into an Na+-labile pool followed by an ATP-dependent accumulation into an Na+-resistant pool. Ca2+ accumulation is extensive at free Ca2+ concentrations greater than 3 . 10(-6) M in the presence of ATP. Ruthenium red and dinitrophenol block Ca2+ accumulation, but atractyloside does not. Oligomycin blocks ATP-supported accumulation completely with a partial inhibition of ATP and malate-supported accumulation. Little difference could be found in mitochondrial preparations from vitamin D-deficient chicks compared to those from vitamin D-3 (or 1,25(OH)2D-3)-supplemented chicks with respect to respiratory control, oxygen consumption, efficiency of oxidative phosphorylation, affinity for Ca2+, or the rate and extent of ATP-supported Ca2+ accumulation. Intestinal cytosol stimulated Ca2+ accumulation, but this was not specific with respect to vitamin D status or tissue of origin, nor was it duplicated by chick intestinal Ca2+-binding protein. 30 ng/ml 1,25(OH)2D-3 stimulated Ca2+ accumulation directly, regardless of the presence of intestinal cytosol. Other vitamin D metabolites were less potent: 25-hydroxyvitamin D-3 greater than 24,25-dihydroxyvitamin D-3 = vitamin D-3. Since increasing the free Ca2+ concentration from 3 . 10(-6) to 1 . 10(-5) M increased Ca2+ accumulation approx. 50-fold, whereas direct stimulation by 1,25(OH)2D-3 in vitro increased Ca2+ accumulation less than 2-fold, we conclude that 1,25(OH)2D-3 influences mitochondrial accumulation of Ca2+ in vivo primarily by altering cytosol concentrations of free Ca2+.  相似文献   

17.
18.
Effect of YM175, a new bisphosphonate, on vitamin D metabolism was studied in rats. When animals were treated with the compound, serum 1,25-dihydroxyvitamin D increased in a dose dependent manner. The effect was also detected in thyroparathyroidectomized animals. The effect appears to be due to the stimulation of renal production of the hormone, since renal 1-hydroxylase was also elevated in these animals. However, when kidneys were incubated with YM175 and then renal 1-hydroxylase activity was examined, the enzyme activity was not different from that of non-treated control kidney. We conclude therefore that YM175 indirectly stimulates renal 25-hydroxyvitamin D-1-hydroxylase by increasing circulating parathyroid hormone via an unknown mechanism independent of parathyroid hormone. This is the first direct demonstration of increase in the renal production of 1,25-dihydroxyvitamin D resulting from bisphosphonate treatment.  相似文献   

19.
Side-chain oxidation of vitamin D is an important degradative pathway. In the present study we compared the enzymes involved in side-chain oxidation in normal and Hyp mouse kidney. Homogenates of normal mouse kidney catalyze the conversion of 25-hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3, 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3. After subcellular fractionation, total side-chain oxidative activity, estimated by the sum of the three products synthesized per milligram protein under initial rate conditions, coincided with the mitochondrial enzyme marker succinate-cytochrome-c reductase. Treatment of normal mice with 1,25-dihydroxyvitamin D3 (1.5 ng/g) resulted in an eightfold increase in mitochondrial enzyme activity, with no change in apparent Km but a significant rise in Vmax. With 24,25-dihydroxyvitamin D3 as the substrate, normal renal mitochondria produced 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, and the synthesis of these metabolites could be increased sixfold by pretreatment with 1,25-dihydroxyvitamin D3. In the Hyp mouse, the side-chain oxidation pathway showed similar subcellular distribution of enzyme activity. However, product formation from 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 was twofold greater in mutant than in normal mitochondria. Furthermore, 1,25-dihydroxyvitamin D3 pretreatment of Hyp mice resulted in a 3.4-fold increase over basal metabolism of both 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. These results demonstrate that (i) kidneys from normal and Hyp mice possess basal and 1,25-dihydroxyvitamin D3 inducible enzyme system(s) in the mitochondrial fraction, which catalyze the side-chain oxidation of 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3, and (ii) the Hyp mutation appears to perturb the renal metabolism of both substrates only in the basal state.  相似文献   

20.
The plasminogen activator (PA) in clonal osteogenic sarcoma cells of rat origin (UMR 106-01 and UMR 106-06) and in osteoblast-rich rat calvarial cells has been characterized using specific antibodies to be tissue-type PA (tPA). An Mr value of 75,000 by SDS-polyacrylamide gel electrophoresis and fibrin autoradiography supports this characterization. There was also evidence for an Mr 105,000 component, which could be due to a proteinase-inhibitor complex. The mechanism of regulation of this tPA activity has been studied in the clonal osteogenic sarcoma cells. Parathyroid hormone (PTH) and prostaglandin E2, which increase cyclic AMP production in the sarcoma cells, also increased tPA activity. The sensitivity and magnitude of the tPA response to PTH and prostaglandin E2 were increased by simultaneous treatment with isobutylmethylxanthine (IBMX) at drug concentrations which had little effect themselves on tPA activity. In UMR 106-06 cells, which unlike UMR 106-01 cells show a cyclic AMP response to calcitonin, tPA activity was also increased in response to calcitonin, and the effect was enhanced by IBMX. 1,25-Dihydroxyvitamin D-3 also increased tPA activity in the cells, but this response was not modified by IBMX. Synthetic peptide antagonists of PTH-responsive adenylate cyclase, [34Tyr]-hPTH (3-34) amide and [34Tyr]-hPTH (5-34) amide, inhibited the PTH-induced increase in tPA activity over the same concentration range at which they inhibited cyclic AMP production, but the antagonist peptides had no effect on the tPA responses to prostaglandin E2, calcitonin or 1,25-dihydroxyvitamin D-3. These data indicate that cyclic AMP mediates the actions of PTH, prostaglandin E2 and calcitonin in increasing tPA activity in the clonal osteogenic sarcoma cells. 1,25-Dihydroxyvitamin D-3, on the other hand, increases tPA activity through a mechanism independent of cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号