首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We isolated three Escherichia coli suppressor strains that reduce the copy number of a mutant ColE1 high-copy-number plasmid. These mutations lower the copy number of the mutant plasmid in vivo up to 15-fold; the wild-type plasmid copy number is reduced by two- to threefold. The suppressor strains do not affect the copy numbers of non-ColE1-type plasmids tested, suggesting that their effects are specific for ColE1-type plasmids. Two of the suppressor strains show ColE1 allele-specific suppression; i.e., certain plasmid copy number mutations are suppressed more efficiently than others, suggesting specificity in the interaction between the suppressor gene product and plasmid replication component(s). All of the mutations were genetically mapped to the chromosomal polA gene, which encodes DNA polymerase I. The suppressor mutational changes were identified by DNA sequencing and found to alter single nucleotides in the region encoding the Klenow fragment of DNA polymerase I. Two mutations map in the DNA-binding cleft of the polymerase region and are suggested to affect specific interactions of the enzyme with the replication primer RNA encoded by the plasmid. The third suppressor alters a residue in the 3'-5' exonuclease domain of the enzyme. Implications for the interaction of DNA polymerase I with the ColE1 primer RNA are discussed.  相似文献   

3.
The initiation stage of ColE1-type plasmid replication was reconstituted with purified protein fractions from Escherichia coli. The reconstituted system included DNA polymerase I, DNA ligase, RNA polymerase, DNA gyrase, and a discriminating activity copurifying with RNAase H (but free of RNAase III). Initiation of DNA synthesis in the absence of RNAase H did not occur at the normal replication origin and was non-selective with respect to the plasmid template. In the presence of RNAase H the system was selective for ColE1-type plasmids and could not accept the DNA of non-amplifiable plasmids. Electron microscopic analysis of the reaction product formed under discriminatory conditions indicated that origin usage and directionally of ColE1, RSF1030, and CloDF13 replication were consistent with the normal replication pattern of these plasmids. It is proposed that the initiation of ColE1-type replication depends on the formation of an extensive secondary structure in the origin primer RNA that prevents its degradation by RNAase H.  相似文献   

4.
5.
6.
7.
8.
Chen DQ  Zheng XC  Lu YJ 《Plasmid》2006,56(3):167-178
ColE1-type plasmids are commonly used in bacterial genetics research, and replication of these plasmids is regulated by interaction of RNA I and RNA II. Although these plasmids are narrow-host-range, they can be maintained in Legionella pneumophila under antibiotic selection, with low-copy number and instability. Here, we have described the isolation of two novel spontaneous mutants of pBC(gfp)Pmip, pBG307 and pBG309, which are able to mark the L. pneumophila with strong green fluorescence when exposed to visible light. One of the mutants, pBG307, has a single CG-->TA mutation in RNA II promoter located 2-bases upstream the - 10 region. Another one, pBG309, has the same mutation, as well as an additional CG-->AT mutation in the 76th nucleotide of RNA I, or in the 6th nucleotide of RNA II. A plasmid with the single mutation in RNA I, pBG308, was also constructed. Characterization of these plasmids carrying the enhanced green fluorescent protein (gfpmut2) gene revealed that the green fluorescence intensities of these plasmids were 2- to 30-fold higher than that of the wild type and both of the mutations contribute to increase the plasmid copy number and/or plasmid stability. The mutation located in RNA II promoter played a more dominant role in elevating the copy number, compared to the mutation in RNA I. We also tested the mutant plasmids for replication in Escherichia coli, and found that their copy number and stability were dramatically decreased, except pBG307. Our data suggest that these plasmids might be useful and convenient in genetic studies in L. pneumophila.  相似文献   

9.
Summary Thermal inactivation of the dnaA gene product leads to a considerable decrease in the rate of replication of ColE1-like plasmids. To test the possiblity that the dnaA protein may affect synthesis of RNA I, which is an inhibitor of primer formation, or synthesis of RNA II, which is the primer precursor for replication of ColE1 (Tomizawa and Itoh 1982), the effect of the dnaA46 mutation on the efficiency of the RNA I and the RNA II promoters was examined. It appears that thermal inactivation of the dnaA protein results in a considerable increase in the activity of the RNA I promoter. We suggest that overproduction of RNA I in dnaA mutants grown at the restrictive temperature is responsible for the reduced replication of ColE1-like plasmids.It has been found that addition of rifampicin to cultures of the dnaA46 or the dna + strain grown at 42°C results in a dramatic increase in the rate of replication of ColE1-like plasmids. We show that the activity of the RNA II promoter at 42°C is exceptionally resistant to rifampicin. In the presence of the drug, this leads, to an altered ratio of RNA I to RNA II, in favor of the latter RNA species.  相似文献   

10.
11.
12.
13.
The plasmid ColE2-P9 origin is a 32-bp region which is specifically recognized by the plasmid-specified Rep protein to initiate DNA replication. We analyzed the structural and functional organization of the ColE2 origin by using various derivatives carrying deletions and single-base-pair substitutions. The origin may be divided into three subregions: subregion I, which is important for stable binding of the Rep protein; subregion II, which is important for binding of the Rep protein and for initiation of DNA replication; and subregion III, which is important for DNA replication but apparently not for binding of the Rep protein. The Rep protein might recognize three specific DNA elements in subregions I and II. The relative transformation frequency of the autonomously replicating plasmids carrying deletions in subregion I is lower, and nevertheless the copy numbers of these plasmids in host bacteria are higher than those of the wild-type plasmid. Efficient and stable binding of the Rep protein to the origin might be important for the replication efficiency to be at the normal (low) level. Subregion II might be essential for interaction with the catalytic domain of the Rep protein for primer RNA synthesis. The 8-bp sequence across the border of subregions II and III, including the primer sequence, is conserved in the (putative) origins of many plasmids, the putative Rep proteins of which are related to the ColE2-P9 Rep protein. Subregion III might be required for a step that is necessary after Rep protein binding has taken place.  相似文献   

14.
15.
S Takechi  H Matsui    T Itoh 《The EMBO journal》1995,14(20):5141-5147
Initiation of in vitro ColE2 DNA replication requires the plasmid-specified Rep protein and DNA polymerase I but not RNA polymerase and DnaG primase. The ColE2 Rep protein binds specifically to the origin where replication initiates. Leading-strand synthesis initiates at a unique site in the origin and lagging-strand DNA synthesis terminates at another unique site in the origin. Here we show that the primer RNA for leading-strand synthesis at the origin has a unique structure of 5'-ppApGpA. We reconstituted the initiation reaction of leading-strand DNA synthesis by using purified proteins, the ColE2 Rep protein, Escherichia coli DNA polymerase I and SSB, and we showed that the ColE2 Rep protein is a priming enzyme, primase, which is specific for the ColE2 origin. The ColE2 Rep protein is unique among other primases in that it recognizes the origin region and synthesizes the primer RNA at a fixed site in the origin region. Specific requirement for ADP as a substrate and its direct incorporation into the 5' end of the primer RNA are also unique properties of the ColE2 Rep protein.  相似文献   

16.
17.
18.
Mutations affecting a region of the Escherichia coli RNA polymerase have been isolated that specifically reduce the copy number of ColE1-type plasmids. The mutations, which result in a single amino acid alteration (G1161R) or a 41-amino acid deletion (Delta1149-1190) are located near the 3'-terminal region in the rpoC gene, which encodes the largest subunit (beta ') of the RNA polymerase. The rpoC deletion and the point mutation cause over 20- and 10-fold reductions, respectively, in the copy number of ColE1. ColE1 plasmid numbers are regulated by two plasmid-encoded RNAs: RNA II, which acts as a preprimer for the DNA polymerase I to start initiation of replication, and RNA I, its antisense inhibitor. Altered expression from the RNA I and RNA II promoters in vivo was observed in the RNA polymerase mutants. The RNA I/RNA II ratio is higher in the mutants than in the wild-type strain and this is most probably the main reason for the reduction in the ColE1 copy number in the two rpoC mutants.  相似文献   

19.
20.
Plasmid ColE1 has three recognition sites for the Escherichia coli DNA adenine methylase in the immediate upstream region of the primer promoter. Two of these sites are conserved among all plasmid relatives of ColE1 and constitute parts of an inverted repeat that can conceivably form a cruciform structure. Recent experiments have indicated that hemimethylated ColE1-type plasmids are inefficiently replicated after transformation (D. W. Russell and N. Zinder, Cell 50:1071-1079, 1987). By mutating the three methylation sites, we found that disruption of all three GATC sites was necessary for complete relief of the hemimethylation-mediated inhibition of replication in vivo. We also found that these three methylation sites acted in a position-specific manner. The putative cruciform, if present, did not play a regulatory role in the hemimethylation-mediated inhibition of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号