首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K J Hillers  F W Stahl 《Genetics》1999,153(2):555-572
In Saccharomyces cerevisiae, some gene loci manifest gradients in the frequency of aberrant segregation in meiosis, with the high end of each gradient corresponding to a hotspot for DNA double-strand breaks (DSBs). The slope of a gradient is reduced when mismatch repair functions fail to act upon heteroduplex DNA-aberrant segregation frequencies at the low end of the gradient are higher in the absence of mismatch repair. Two models for the role of mismatch repair functions in the generation of meiotic "conversion gradients" have been proposed. The heteroduplex rejection model suggests that recognition of mismatches by mismatch repair enzymes limits hybrid DNA flanking the site of a DSB. The restoration-conversion model proposes that mismatch repair does not affect the length of hybrid DNA, but instead increasingly favors restoration of Mendelian segregation over full conversion with increasing distance from the DSB site. In our experiment designed to distinguish between these two models, data for one subset of well repairable mismatches in the HIS4 gene failed to show restoration-type repair but did indicate reduction in the length of hybrid DNA, supporting the heteroduplex rejection model. However, another subset of data manifested restoration-type repair, indicating a relationship between Holliday junction resolution and mismatch repair. We also present evidence for the infrequent formation of symmetric hybrid DNA during meiotic DSB repair.  相似文献   

2.
Summary The induction of mitotic gene conversion and crossing-over inSaccharomyces cerevisiae diploid cells homozygous for thepso4-1 mutation was examined in comparison to the corresponding wild-type strain. Thepso4-1 mutant strain was found to be completely blocked in mitotic recombination induced by photoaddition of mono- and bifunctional psoralen derivatives as well as by mono- (HN1) and bifunctional (HN2) nitrogen mustards or 254 nm UV radiation in both stationary and exponential phases of growth. Concerning the lethal effect, diploids homozygous for thepso4-1 mutation are more sensitive to all agents tested in any growth phase. However, this effect is more pronounced in the G2 phase of the cell cycle. These results imply that the ploidy effect and the resistance of budding cells are under the control of thePSO4 gene. On the other hand, thepso4-1 mutant is mutationally defective for all agents used. Therefore, thepso4-1 mutant has a generalized block in both recombination and mutation ability. This indicates that thePSO4 gene is involved in an error-prone repair pathway which relies on a recombinational mechanism, strongly suggesting an analogy between thepso4-1 mutation and theRecA orLexA mutation ofEscherichia coli.  相似文献   

3.
B J Merrill  C Holm 《Genetics》1999,153(2):595-605
To examine the role of the RAD52 recombinational repair pathway in compensating for DNA replication defects in Saccharomyces cerevisiae, we performed a genetic screen to identify mutants that require Rad52p for viability. We isolated 10 mec1 mutations that display synthetic lethality with rad52. These mutations (designated mec1-srf for synthetic lethality with rad-fifty-two) simultaneously cause two types of phenotypes: defects in the checkpoint function of Mec1p and defects in the essential function of Mec1p. Velocity sedimentation in alkaline sucrose gradients revealed that mec1-srf mutants accumulate small single-stranded DNA synthesis intermediates, suggesting that Mec1p is required for the normal progression of DNA synthesis. sml1 suppressor mutations suppress both the accumulation of DNA synthesis intermediates and the requirement for Rad52p in mec1-srf mutants, but they do not suppress the checkpoint defect in mec1-srf mutants. Thus, it appears to be the DNA replication defects in mec1-srf mutants that cause the requirement for Rad52p. By using hydroxyurea to introduce similar DNA replication defects, we found that single-stranded DNA breaks frequently lead to double-stranded DNA breaks that are not rapidly repaired in rad52 mutants. Taken together, these data suggest that the RAD52 recombinational repair pathway is required to prevent or repair double-stranded DNA breaks caused by defective DNA replication in mec1-srf mutants.  相似文献   

4.
Regulation of HIS4-lacZ fusions in Saccharomyces cerevisiae.   总被引:31,自引:15,他引:16       下载免费PDF全文
The beginning of the Saccharomyces cerevisiae HIS4 gene has been fused to the structural gene for Escherichia coli beta-galactosidase. This construction, which contains HIS4 DNA from -732 to +30 relative to the translation initiation codon, has been integrated into the yeast genome at two chromosomal locations, HIS4 and URA3. At both locations, this 762-base-pair stretch of DNA is sufficient for initiating expression of beta-galactosidase activity in S. cerevisiae and confers upon this activity the regulatory response normally found for HIS4.  相似文献   

5.
The cause of reproductive isolation between biological species is a major issue in the field of biology. Most explanations of hybrid sterility require either genetic incompatibilities between nascent species or gross physical imbalances between their chromosomes, such as rearrangements or ploidy changes. An alternative possibility is that genomes become incompatible at a molecular level, dependent on interactions between primary DNA sequences. The mismatch repair system has previously been shown to contribute to sterility in a hybrid between established yeast species by preventing successful meiotic crossing-over leading to aneuploidy. This system could also promote or reinforce the formation of new species in a similar manner, by making diverging genomes incompatible in meiosis. To test this possibility we crossed yeast strains of the same species but from diverse historical or geographic sources. We show that these crosses are partially sterile and present evidence that the mismatch repair system is largely responsible for this sterility.  相似文献   

6.
The role of cis- and trans-acting elements in the expression of HIS4 has been examined by using HIS4-lacZ fusions in which lacZ expression is dependent upon the HIS4 5' noncoding region. The cis-acting sequences involved in regulation were defined by studying the effects of the wild-type and various deletions and their revertants on regulation via the general control of amino acid biosynthesis. The role of trans-acting genes was analyzed by studying the regulation of the HIS4-lacZ fusions in strains carrying mutations in the GCN (AAS) or GCD (TRA) genes and in strains carrying the GCN genes on high-copy-number plasmids. These studies have led to the following conclusions. (i) HIS4 is positively regulated by the general control. (ii) At least one copy of the 5'TGACTC3' repeat at -136 is required in cis for this regulation. (iii) Both the GCN4 gene and at least one copy of the repeated sequence are required for expression at the repressed level. (iv) The open reading frames in the 5' noncoding region are not required in either cis or trans for the regulation of HIS4.  相似文献   

7.
In mammalian cells, several features of the way homologous recombination occurs between transferred and chromosomal DNA are consistent with the double-strand-break repair (DSBR) model of recombination. In this study, we examined the segregation patterns of small palindrome markers, which frequently escape mismatch repair when encompassed within heteroduplex DNA formed in vivo during mammalian homologous recombination, to test predictions of the DSBR model, in particular as they relate to the mechanism of crossover resolution. According to the canonical DSBR model, crossover between the vector and chromosome results from cleavage of the joint molecule in two alternate sense modes. The two crossover modes lead to different predicted marker configurations in the recombinants, and assuming no bias in the mode of Holliday junction cleavage, the two types of recombinants are expected in equal frequency. However, we propose a revision to the canonical model, as our results suggest that the mode of crossover resolution is biased in favor of cutting the DNA strands upon which DNA synthesis is occurring during formation of the joint molecule. The bias in junction resolution permitted us to examine the potential consequences of mismatch repair acting on the DNA breaks generated by junction cutting. The combination of biased junction resolution with both early and late rounds of mismatch repair can explain the marker patterns in the recombinants.  相似文献   

8.
Goldfarb T  Alani E 《Genetics》2005,169(2):563-574
The Saccharomyces cerevisiae mismatch repair (MMR) protein MSH6 and the SGS1 helicase were recently shown to play similarly important roles in preventing recombination between divergent DNA sequences in a single-strand annealing (SSA) assay. In contrast, MMR factors such as Mlh1p, Pms1p, and Exo1p were shown to not be required or to play only minimal roles. In this study we tested mutations that disrupt Sgs1p helicase activity, Msh2p-Msh6p mismatch recognition, and ATP binding and hydrolysis activities for their effect on preventing recombination between divergent DNA sequences (heteroduplex rejection) during SSA. The results support a model in which the Msh proteins act with Sgs1p to unwind DNA recombination intermediates containing mismatches. Importantly, msh2 mutants that displayed separation-of-function phenotypes with respect to nonhomologous tail removal during SSA and heteroduplex rejection were characterized. These studies suggest that nonhomologous tail removal is a separate function of Msh proteins that is likely to involve a distinct DNA binding activity. The involvement of Sgs1p in heteroduplex rejection but not nonhomologous tail removal further illustrates that subsets of MMR proteins collaborate with factors in different DNA repair pathways to maintain genome stability.  相似文献   

9.
We have mutated various features of the 5' noncoding region of the HIS4 mRNA in light of established Saccharomyces cerevisiae and mammalian consensus translational initiator regions. Our analysis indicates that insertion mutations that introduce G + C-rich sequences in the leader, particularly those that result in stable stem-loop structures in the 5' noncoding region of the HIS4 message, severely affect translation initiation. Mutations that alter the length of the HIS4 leader from 115 to 39 nucleotides had no effect on expression, and sequence context changes both 5' and 3' to the HIS4 AUG start codon resulted in no more than a twofold decrease of expression. Changing the normal context at HIS4 5'-AAUAAUGG-3' to the optimal sequence context proposed for mammalian initiator regions 5'-CACCAUGG-3' did not result in stimulation of HIS4 expression. These studies, in conjunction with comparative and genetic studies in S. cerevisiae, support a general mechanism of initiation of protein synthesis as proposed by the ribosomal scanning model.  相似文献   

10.
Hoffmann ER  Eriksson E  Herbert BJ  Borts RH 《Genetics》2005,169(3):1291-1303
Double-strand breaks (DSBs) initiate meiotic recombination. The DSB repair model predicts that both genetic markers spanning the DSB should be included in heteroduplex DNA and be detectable as non-Mendelian segregations (NMS). In experiments testing this, a significant fraction of events do not conform to this prediction, as only one of the markers displays NMS (one-sided events). Two explanations have been proposed to account for the discrepancies between the predictions and experimental observations. One suggests that two-sided events are the norm but are "hidden" as heteroduplex repair frequently restores the parental configuration of one of the markers. Another explanation posits that one-sided events reflect events in which heteroduplex is formed predominantly on only one side of the DSB. In the absence of heteroduplex repair, the first model predicts that two-sided events would be revealed at the expense of one-sided events, while the second predicts no effect on the distribution of events when heteroduplex repair is lost. We tested these predictions by deleting the DNA mismatch repair genes MSH2 or MLH1 and analyzing the proportion of two-sided events. Unexpectedly, the results do not match the predictions of either model. In both mlh1Delta and msh2Delta, the proportion of two-sided events is significantly decreased relative to wild type. These observations can be explained in one of two ways. Either Msh2p/Mlh1p-independent mispair removal leads to restoration of one of the markers flanking the DSB site or Msh2p/Mlh1p actively promote two-sided events.  相似文献   

11.
12.
M Heude 《Mutation research》1988,194(2):151-163
In order to discover whether the nuclear recombinational repair pathway also acts on lesions induced in mitochondrial DNA (mtDNA), the possible role of the RAD50, -51, -52, -55 and -56 genes on the induction of rho- mutants by radiations was studied. Such induction appeared to be independent of this pathway. Nevertheless, an efficient induction of respiration-deficient mutants was observed in gamma-irradiated rad52 diploids. We demonstrate that these mutants do not result from a lack of mtDNA repair, but from chromosome losses induced by gamma-rays. Such an impairment of the respiratory ability of diploids by chromosome losses was effectively observed in the aneuploid progeny of unirradiated RAD+ cdc6 diploids incubated at the restrictive temperature.  相似文献   

13.
Jensen LE  Jauert PA  Kirkpatrick DT 《Genetics》2005,170(3):1033-1043
During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplex DNA is formed when single-stranded DNAs from two homologs anneal as a consequence of strand invasion. If the two DNA strands differ in sequence, a mismatch will be generated. Mismatches in heteroduplex DNA are recognized and repaired efficiently by meiotic DNA mismatch repair systems. Components of two meiotic systems, mismatch repair (MMR) and large loop repair (LLR), have been identified previously, but the substrate range of these repair systems has never been defined. To determine the substrates for the MMR and LLR repair pathways, we constructed insertion mutations at HIS4 that form loops of varying sizes when complexed with wild-type HIS4 sequence during meiotic heteroduplex DNA formation. We compared the frequency of repair during meiosis in wild-type diploids and in diploids lacking components of either MMR or LLR. We find that the LLR pathway does not act on single-stranded DNA loops of <16 nucleotides in length. We also find that the MMR pathway can act on loops up to 17, but not >19, nucleotides in length, indicating that the two pathways overlap slightly in their substrate range during meiosis. Our data reveal differences in mitotic and meiotic MMR and LLR; these may be due to alterations in the functioning of each complex or result from subtle sequence context influences on repair of the various mismatches examined.  相似文献   

14.
15.
Y S Weng  J A Nickoloff 《Genetics》1998,148(1):59-70
Double-strand break (DSB) induced gene conversion in Saccharomyces cerevisiae during meiosis and MAT switching is mediated primarily by mismatch repair of heteroduplex DNA (hDNA). We used nontandem ura3 duplications containing palindromic frameshift insertion mutations near an HO nuclease recognition site to test whether mismatch repair also mediates DSB-induced mitotic gene conversion at a non-MAT locus. Palindromic insertions included in hDNA are expected to produce a stem-loop mismatch, escape repair, and segregate to produce a sectored (Ura+/-) colony. If conversion occurs by gap repair, the insertion should be removed on both strands, and converted colonies will not be sectored. For both a 14-bp palindrome, and a 37-bp near-palindrome, approximately 75% of recombinant colonies were sectored, indicating that most DSB-induced mitotic gene conversion involves mismatch repair of hDNA. We also investigated mismatch repair of well-repaired markers flanking an unrepaired palindrome. As seen in previous studies, these additional markers increased loop repair (likely reflecting corepair). Among sectored products, few had additional segregating markers, indicating that the lack of repair at one marker is not associated with inefficient repair at nearby markers. Clear evidence was obtained for low levels of short tract mismatch repair. As seen with full gene conversions, donor alleles in sectored products were not altered. Markers on the same side of the DSB as the palindrome were involved in hDNA less often among sectored products than nonsectored products, but markers on the opposite side of the DSB showed similar hDNA involvement among both product classes. These results can be explained in terms of corepair, and they suggest that mismatch repair on opposite sides of a DSB involves distinct repair tracts.  相似文献   

16.
Radiation resistance in Saccharomyces cerevisiae is greater in a/alpha diploids than in aa or alpha alpha diploids, and higher levels of radiation resistance correlates with more mitotic recombination. Specifically, we investigated whether the stimulation of directed translocations, inversions, and unequal sister chromatid exchanges (SCEs) by HO endonuclease-induced double-strand breaks (DSBs) is enhanced in a/alpha cells. These rearrangements result from mitotic recombination between two truncated his3 genes, his3-delta 5' and his3-delta 3'::HOcs, positioned on non-homologous chromosomes or positioned in juxtaposition on the same chromosome in inverted or direct orientation. Mitotic recombination was initiated by HO endonuclease-induced DSBs at the HO cut site (HOcs) located at his3-delta 3'::HOcs, and His+ recombinants were selected. In MATa-inc haploid strains, which do not switch mating-type, the DSB reduced viability, relative to undamaged cells, and increases the frequency of His+ recombinants containing translocations to 2.4 x 10(-4) (seven-fold), SCEs to 5.4 x 10(-4) (five-fold), and inversions to 1.8 x 10(-3) (six-fold). Compared to a haploids, DSB-stimulated frequencies in a/alpha haploids were three-fold higher for translocations, two-fold higher for SCEs, and ten-fold higher for inversions; however DSB-induced lethality was greater in a/alpha haploids. Compared to aa diploids, DSB-stimulated frequencies of translocations and viability after chromosome cleavage were greater in a/alpha diploids. We suggest that heterozygosity at MAT may elevate the frequency of DSB-initiated reciprocal exchange events in both haploid and diploid cells, but may only increase viability after chromosome cleavage in diploid cells.  相似文献   

17.
C G Gendrel  M Dutreix 《Genetics》2001,159(4):1539-1545
Sequence divergence reduces the frequency of recombination, a process that is dependent on the activity of the mismatch repair system. In the yeast Saccharomyces cerevisiae, repair of mismatches results in gene conversion or restoration, whereas failure to repair mismatches results in postmeiotic segregation (PMS). By examining the conversion and PMS in yeast strains deficient in various MMR genes and heterozygous for large inserts (107 bp) with either a mixed sequence or a 39 (CA/TG) repetitive microsatellite sequence, we demonstrate that: (1) the inhibition of conversion by large inserts depends upon a complex containing both Msh2 and Pms1 proteins; (2) conversion is not inhibited if the single-stranded DNA loop in the heteroduplex is the microsatellite sequence; and (3) large heteroduplex loops with random sequence or repetitive sequence might be repaired by two complexes, containing either Msh2 or Pms1. Our results suggest that inhibition of recombination by heterologous inserts and large loop repair are not processed by the same MMR complexes. We propose that the inhibition of conversion by large inserts is due to recognition by the Msh2/Pms1 complex of mismatches created by intrastrand interactions in the heteroduplex loop.  相似文献   

18.
Lumazine synthase of Saccharomyces cerevisiae is a homopentamer with a molecular weight of 90 kDa. Crystals of the recombinant enzyme with a size of up to 1.6 mm were obtained. The space group is P4(1)2(1)2 with lattice dimensions 82.9 A x 82.9 A x 300.2 A. X-ray diffraction data collected under cryogenic conditions were complete to 1.85 A resolution. The structure of the enzyme in complex with the intermediate analogue, 5-(6-D-ribitylamino-2,4-dihydroxypyrimidine-5-yl)-1-pentyl-p hosphonic acid was solved via molecular replacement using the structure of the Bacillus subtilis enzyme as search model and was refined to a final R-factor of 19.8% (Rfree: 22.5%). The conformation of the active site ligand of the enzyme mimicks that of the Schiff base intermediate of the enzyme-catalyzed reaction. The data enable the reconstruction of the reactant topology during the early steps of the catalytic reaction. Structural determinants, which are likely to be responsible for the inability of the S. cerevisiae enzyme to form icosahedral capsids, will be discussed.  相似文献   

19.
We used the his3 recombinational substrates (his3 fragments) to direct large interchromosomal (translocations) and intrachromosomal (deletions and tandem duplications) rearrangements in the yeast Saccharomyces cerevisiae. In strains completely deleted for the wild-type HIS3 gene, his3 fragments, one containing a deletion of 5' amino acid coding sequences and the other containing a deletion of 3' amino acid coding sequences, were first placed at preselected sites by homologous recombination. His+ revertants that arose via spontaneous mitotic recombination between the two his3 fragments were selected. This strategy was used to direct rearrangements in both RAD52+ and rad52 mutant strains. Translocations occurred in the RAD52+ genetic background and were characterized by orthogonal field alternating gel electrophoresis of yeast chromosomal DNA and by standard genetic techniques. An unexpected translocation was also identified in which HIS3 sequences were amplified. Two types of tandem duplications of the GAL(7, 10, 1) locus were also directed, and one type was not observed in rad52 mutants. Recombination mechanisms are discussed to account for these differences.  相似文献   

20.
We have previously shown that recombination between 400-bp substrates containing only 4-bp differences, when present in an inverted repeat orientation, is suppressed by >20-fold in wild-type strains of S. cerevisiae. Among the genes involved in this suppression were three genes involved in mismatch repair--MSH2, MSH3, and MSH6--and one in nucleotide excision repair, RAD1. We now report the involvement of these genes in interchromosomal recombination occurring via crossovers using these same short substrates. In these experiments, recombination was stimulated by a double-strand break generated by the HO endonuclease and can occur between completely identical (homologous) substrates or between nonidentical (homeologous) substrates. In addition, a unique feature of this system is that recombining DNA strands can be given a choice of either type of substrate. We find that interchromosomal crossover recombination with these short substrates is severely inhibited in the absence of MSH2, MSH3, or RAD1 and is relatively insensitive to the presence of mismatches. We propose that crossover recombination with these short substrates requires the products of MSH2, MSH3, and RAD1 and that these proteins have functions in recombination in addition to the removal of terminal nonhomology. We further propose that the observed insensitivity to homeology is a result of the difference in recombinational mechanism and/or the timing of the observed recombination events. These results are in contrast with those obtained using longer substrates and may be particularly relevant to recombination events between the abundant short repeated sequences that characterize the genomes of higher eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号