首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative splicing is an important mechanism for the regulation of bovine papillomavirus type 1 (BPV-1) gene expression during the virus life cycle. Previous studies in our laboratory have identified two purine-rich exonic splicing enhancers (ESEs), SE1 and SE2, located between two alternative 3′ splice sites at nucleotide (nt) 3225 and nt 3605. Further analysis of BPV-1 late-pre-mRNA splicing in vitro revealed a 48-nt pyrimidine-rich region immediately downstream of SE1 that inhibits utilization of the nt 3225 3′ splice site. This inhibitory element, which we named an exonic splicing suppressor (ESS), has a U-rich 5′ end, a C-rich central part, and an AG-rich 3′ end (Z. M. Zheng, P. He, and C. C. Baker, J. Virol. 70:4691–4699, 1996). The present study utilized in vitro splicing of both homologous and heterologous pre-mRNAs to further characterize the ESS. The BPV-1 ESS was inserted downstream of the 3′ splice site in the BPV-1 late pre-mRNA, Rous sarcoma virus src pre-mRNA, human immunodeficiency virus tat-rev pre-mRNA, and Drosophila dsx pre-mRNA, all containing a suboptimal 3′ splice site, and in the human β-globin pre-mRNA, which contains a constitutive 3′ splice site. These studies demonstrated that suppression of splicing by the BPV-1 ESS requires an upstream suboptimal 3′ splice site but not an upstream ESE. Furthermore, the ESS functions when located either upstream or downstream of BPV-1 SE1. Mutational analyses demonstrated that the function of the ESS is sequence dependent and that only the C-rich region of the ESS is essential for suppression of splicing in all the pre-mRNAs tested.  相似文献   

2.
Efficient splicing of the 5′-most intron of pre-mRNA requires a 5′ m7G(5′)ppp(5′)N cap, which has been implicated in U1 snRNP binding to 5′ splice sites. We demonstrate that the cap alters the kinetic profile of U1 snRNP binding, but its major effect is on U6 snRNA binding. With two alternative wild-type splice sites in an adenovirus pre-mRNA, the cap selectively alters U1 snRNA binding at the site to which cap-independent U1 snRNP binding is stronger and that is used predominantly in splicing; with two consensus sites, the cap acts on both, even though one is substantially preferred for splicing. However, the most striking quantitative effect of the 5′ cap is neither on U1 snRNP binding nor on the assembly of large complexes but on the replacement of U1 snRNP by U6 snRNA at the 5′ splice site. Inhibition of splicing by a cap analogue is correlated with the loss of U6 interactions at the 5′ splice site and not with any loss of U1 snRNP binding.  相似文献   

3.
Polypyrimidine tract-binding protein (PTB) is a splicing regulator that also plays a positive role in pre-mRNA 3′ end processing when bound upstream of the polyadenylation signal (pA signal). Here, we address the mechanism of PTB stimulatory function in mRNA 3′ end formation. We identify PTB as the protein factor whose binding to the human β-globin (HBB) 3′ UTR is abrogated by a 3′ end processing-inactivating mutation. We show that PTB promotes both in vitro 3′ end cleavage and polyadenylation and recruits directly the splicing factor hnRNP H to G-rich sequences associated with several pA signals. Increased binding of hnRNP H results in stimulation of polyadenylation through a direct interaction with poly(A) polymerase. Therefore, our results provide evidence of a concerted regulation of pA signal recognition by splicing factors bound to auxiliary polyadenylation sequence elements.  相似文献   

4.
Antisense oligonucleotides are small pieces of modified DNA or RNA, which offer therapeutic potential for many diseases. We report on the synthesis of 7′,5′-α-bc-DNA phosphoramidite building blocks, bearing the A, G, T and MeC nucleobases. Solid-phase synthesis was performed to construct five oligodeoxyribonucleotides containing modified thymidine residues, as well as five fully modified oligonucleotides. Incorporations of the modification inside natural duplexes resulted in strong destabilizing effects. However, fully modified strands formed very stable duplexes with parallel RNA complements. In its own series, 7′,5′-α-bc-DNA formed duplexes with a surprising high thermal stability. CD spectroscopy and extensive molecular modeling indicated the adoption by the homo-duplex of a ladder-like structure, while hetero-duplexes with DNA or RNA still form helical structure. The biological properties of this new modification were investigated in animal models for Duchenne muscular dystrophy and spinal muscular atrophy, where exon splicing modulation can restore production of functional proteins. It was found that the 7′,5′-α-bc-DNA scaffold confers a high biostability and a good exon splicing modulation activity in vitro and in vivo.  相似文献   

5.
Previous studies have identified a conserved AG dinucleotide at the 3′ splice site (3′SS) and a polypyrimidine (pPy) tract that are required for trans splicing of polycistronic pre-mRNAs in trypanosomatids. Furthermore, the pPy tract of the Trypanosoma brucei α-tubulin 3′SS region is required to specify accurate 3′-end formation of the upstream β-tubulin gene and trans splicing of the downstream α-tubulin gene. Here, we employed an in vivo cis competition assay to determine whether sequences other than those of the AG dinucleotide and the pPy tract were required for 3′SS identification. Our results indicate that a minimal α-tubulin 3′SS, from the putative branch site region to the AG dinucleotide, is not sufficient for recognition by the trans-splicing machinery and that polyadenylation is strictly dependent on downstream trans splicing. We show that efficient use of the α-tubulin 3′SS is dependent upon the presence of exon sequences. Furthermore, β-tubulin, but not actin exon sequences or unrelated plasmid sequences, can replace α-tubulin exon sequences for accurate trans-splice-site selection. Taken together, these results support a model in which the informational content required for efficient trans splicing of the α-tubulin pre-mRNA includes exon sequences which are involved in modulation of trans-splicing efficiency. Sequences that positively regulate trans splicing might be similar to cis-splicing enhancers described in other systems.  相似文献   

6.
7.
Splice site selection is a key element of pre-mRNA splicing. Although it is known to involve specific recognition of short consensus sequences by the splicing machinery, the mechanisms by which 5′ splice sites are accurately identified remain controversial and incompletely resolved. The human F7 gene contains in its seventh intron (IVS7) a 37-bp VNTR minisatellite whose first element spans the exon7–IVS7 boundary. As a consequence, the IVS7 authentic donor splice site is followed by several cryptic splice sites identical in sequence, referred to as 5′ pseudo-sites, which normally remain silent. This region, therefore, provides a remarkable model to decipher the mechanism underlying 5′ splice site selection in mammals. We previously suggested a model for splice site selection that, in the presence of consecutive splice consensus sequences, would stimulate exclusively the selection of the most upstream 5′ splice site, rather than repressing the 3′ following pseudo-sites. In the present study, we provide experimental support to this hypothesis by using a mutational approach involving a panel of 50 mutant and wild-type F7 constructs expressed in various cell types. We demonstrate that the F7 IVS7 5′ pseudo-sites are functional, but do not compete with the authentic donor splice site. Moreover, we show that the selection of the 5′ splice site follows a scanning-type mechanism, precluding competition with other functional 5′ pseudo-sites available on immediate sequence context downstream of the activated one. In addition, 5′ pseudo-sites with an increased complementarity to U1snRNA up to 91% do not compete with the identified scanning mechanism. Altogether, these findings, which unveil a cell type–independent 5′−3′-oriented scanning process for accurate recognition of the authentic 5′ splice site, reconciliate apparently contradictory observations by establishing a hierarchy of competitiveness among the determinants involved in 5′ splice site selection.  相似文献   

8.
Recently, we synthesized pyrimidine derivatives of the 2′-O,4′-C-methylenoxymethylene-bridged nucleic-acid (2′,4′-BNACOC) monomer, the sugar conformation of which is restricted in N-type conformation by a seven-membered bridged structure. Oligonucleotides (BNACOC) containing this monomer show high affinity with complementary single-stranded RNA and significant resistance to nuclease degradation. Here, BNACOC consisting of 2′,4′-BNACOC monomers bearing all four bases, namely thymine, 5-methylcytosine, adenine and guanine was efficiently synthesized and properties of duplexes containing the 2′,4′-BNACOC monomers were investigated by UV melting experiments and circular dichroism (CD) spectroscopy. The UV melting curve analyses showed that the BNACOC/BNACOC duplex possessed excellent thermal stability and that the BNACOC increased thermal stability with a complementary RNA strand. On the other hand, BNACOC/DNA heteroduplexes showed almost the same thermal stability as RNA/DNA heteroduplexes. Furthermore, mismatched sequence studies showed that BNACOC generally improved the sequence selectivity with Watson–Crick base-pairing compared to the corresponding natural DNA and RNA. A CD spectroscopic analysis indicated that the BNACOC formed duplexes with complementary DNA and RNA in a manner similar to natural RNA.  相似文献   

9.
Human pre-mRNA processing relies on multi-subunit macromolecular complexes, which recognize specific RNA sequence elements essential for assembly and activity. Canonical pre-mRNA processing proceeds via the recognition of a polyadenylation signal (PAS) and a downstream sequence element (DSE), and produces polyadenylated mature mRNAs, while replication-dependent (RD) histone pre-mRNA processing requires association with a stem–loop (SL) motif and a histone downstream element (HDE), and produces cleaved but non-polyadenylated mature mRNAs. H2AC18 mRNA, a specific H2A RD histone pre-mRNA, can be processed to give either a non-polyadenylated mRNA, ending at the histone SL, or a polyadenylated mRNA. Here, we reveal how H2AC18 captures the two human pre-mRNA processing complexes in a mutually exclusive mode by overlapping a canonical PAS (AAUAAA) sequence element with a HDE. Disruption of the PAS sequence on H2AC18 pre-mRNA prevents recruitment of the canonical complex in vitro, without affecting the histone machinery. This shows how the relative position of cis-acting elements in histone pre-mRNAs allows the selective recruitment of distinct human pre-mRNA complexes, thereby expanding the capability to regulate 3′ processing and polyadenylation.  相似文献   

10.
Group I introns are pre-mRNA introns that do not require the spliceosome for their removal. Instead, they fold into complex three-dimensional structures and catalyze two transesterification reactions, thereby excising themselves and joining the flanking exons. These catalytic RNAs (ribozymes) have been modified previously to work in trans, whereby the ribozymes can recognize a splice site on a substrate RNA and replace the 5′- or 3′-portion of the substrate. Here we describe a new variant of the group I intron ribozyme from Tetrahymena that recognizes two splice sites on a substrate RNA, removes the intron sequences between the splice sites, and joins the flanking exons, analogous to the action of the spliceosome. This ‘group I spliceozyme’ functions in vitro and in vivo, and it is able to mediate a growth phenotype in E. coli cells. The intron sequences of the target pre-mRNAs are constrained near the splice sites but can carry a wide range of sequences in their interior. Because the splice site recognition sequences can be adjusted to different splice sites, the spliceozyme may have the potential for wide applications as tool in research and therapy.  相似文献   

11.
In Drosophila melanogaster, the fruitless (fru) gene controls essentially all aspects of male courtship behavior. It does this through sex-specific alternative splicing of the fru pre-mRNA, leading to the production of male-specific fru mRNAs capable of expressing male-specific fru proteins. Sex-specific fru splicing involves the choice between alternative 5′ splice sites, one used exclusively in males and the other used only in females. Here we report that the Drosophila sex determination genes transformer (tra) and transformer-2 (tra-2) switch fru splicing from the male-specific pattern to the female-specific pattern through activation of the female-specific fru 5′ splice site. Activation of female-specific fru splicing requires cis-acting tra and tra-2 repeat elements that are part of an exonic splicing enhancer located immediately upstream of the female-specific fru 5′ splice site and are recognized by the TRA and TRA-2 proteins in vitro. This fru splicing enhancer is sufficient to promote the activation by tra and tra-2 of both a 5′ splice site and the female-specific doublesex (dsx) 3′ splice site, suggesting that the mechanisms of 5′ splice site activation and 3′ splice site activation may be similar.  相似文献   

12.
Assembly of spliceosomes involves a number of sequential steps in which small nuclear ribonucleoprotein particles (snRNPs) and some non-snRNP proteins recognize the splice site sequences and undergo various conformational rearrangements. A number of important intermolecular RNA-RNA duplexes are formed transiently during the process of splice site recognition. Various steps in the assembly pathway are dependent upon ATP hydrolysis, either for protein phosphorylation or for the activity of helicases, which may modulate the RNA structures. Major efforts have been made to identify proteins that interact with specific regions of the pre-mRNA during the stages of spliceosome assembly and catalysis by site-specific UV cross-linking. However, UV cross-linking is often inefficient for the detection of proteins that interact with base-paired RNA. Here we have used the complementary approach of methylene blue-mediated photo-cross-linking to detect specifically proteins that interact with the duplexes formed between pre-mRNA and small nuclear RNA (snRNA). We have detected a novel cross-link between a 65-kDa protein (p65) and the 5′ splice site. A range of data suggest that p65 cross-links to the transient duplex formed by U1 snRNA and the 5′ splice site. Moreover, although p65 cross-linking requires only a 5′ splice site within the pre-mRNA, it also requires ATP hydrolysis, suggesting that its detection reflects a very early ATP-dependent event during splicing.  相似文献   

13.
14.
Catalytic RNA molecules possess simultaneously a genotype and a phenotype. However, a single RNA genotype has the potential to adopt two or perhaps more distinct phenotypes as a result of differential folding and/or catalytic activity. Such multifunctionality would be particularly significant if the phenotypes were functionally inter-related in a common biochemical pathway. Here, this phenomenon is demonstrated by the ability of the Azoarcus group I ribozyme to function when its canonical internal guide sequence (GUG) has been removed from the 5′ end of the molecule, and added back exogenously in trans. The presence of GUG triplets in non-covalent fragments of the ribozyme allow trans-splicing to occur in both a reverse splicing assay and a covalent self-assembly assay in which the internal guide sequence (IGS)-less ribozyme can put itself together from two of its component pieces. Analysis of these reactions indicates that a single RNA fragment can perform up to three distinct roles in a reaction: behaving as a portion of a catalyst, behaving as a substrate, and providing an exogenous IGS. This property of RNA to be multifunctional in a single reaction pathway bolsters the probability that a system of self-replicating molecules could have existed in an RNA world during the origins of life on the Earth.  相似文献   

15.
Purine-rich enhancers are exon sequences that promote inclusion of alternative exons, usually via activation of weak upstream 3′ splice sites. A recently described purine-rich enhancer from the caldesmon gene has an additional activity by which it directs selection of competing 5′ splice sites within an alternative exon. In this study, we have compared the caldesmon enhancer with another purine-rich enhancer from the chicken cardiac troponin T (cTNT) gene for the ability to regulate flanking splice sites. Although similar in sequence and length, the two enhancers demonstrated strikingly different specificities towards 5′ splice site choice when placed between competing 5′ splice sites in an internal exon. The 32-nucleotide caldesmon enhancer caused effective usage of the exon-internal 5′ splice site, whereas the 30-nucleotide cTNT enhancer caused effective usage of the exon-terminal 5′ splice site. Both enhancer-mediated splicing pathways represented modulation of the default pathway in which both 5′ splice sites were utilized. Each enhancer is multipartite, consisting of two purine-rich sequences of a simple (GAR)n repeat interdigitated with two enhancer-specific sequences. The entire enhancer was necessary for maximal splice site selectivity; however, a 5- to 7-nucleotide region from the 3′ end of each enhancer dictated splice site selectivity. Mutations that interchanged this short region of the two enhancers switched specificity. The portion of the cTNT enhancer determinative for 5′ splice site selectivity was different than that shown to be maximally important for activation of a 3′ splice site, suggesting that enhancer environment can have a major impact on activity. These results are the first indication that individual purine-rich enhancers can differentiate between flanking splice sites. Furthermore, localization of the specificity of splice site choice to a short region within both enhancers indicates that subtle differences in enhancer sequence can have profound effects on the splicing pathway.  相似文献   

16.
Alternative 3′ and 5′ splice site (ss) events constitute a significant part of all alternative splicing events. These events were also found to be related to several aberrant splicing diseases. However, only few of the characteristics that distinguish these events from alternative cassette exons are known currently. In this study, we compared the characteristics of constitutive exons, alternative cassette exons, and alternative 3′ss and 5′ss exons. The results revealed that alternative 3′ss and 5′ss exons are an intermediate state between constitutive and alternative cassette exons, where the constitutive side resembles constitutive exons, and the alternative side resembles alternative cassette exons. The results also show that alternative 3′ss and 5′ss exons exhibit low levels of symmetry (frame-preserving), similar to constitutive exons, whereas the sequence between the two alternative splice sites shows high symmetry levels, similar to alternative cassette exons. In addition, flanking intronic conservation analysis revealed that exons whose alternative splice sites are at least nine nucleotides apart show a high conservation level, indicating intronic participation in the regulation of their splicing, whereas exons whose alternative splice sites are fewer than nine nucleotides apart show a low conservation level. Further examination of these exons, spanning seven vertebrate species, suggests an evolutionary model in which the alternative state is a derivative of an ancestral constitutive exon, where a mutation inside the exon or along the flanking intron resulted in the creation of a new splice site that competes with the original one, leading to alternative splice site selection. This model was validated experimentally on four exons, showing that they indeed originated from constitutive exons that acquired a new competing splice site during evolution.  相似文献   

17.
We have investigated electrostatic and surface features of an essential region of the catalytic core of the spliceosome, the eukaryotic precursor messenger (pre-m)RNA splicing apparatus. The nucleophile for the first of two splicing reactions is the 2′-hydroxyl (OH) of the ribose of a specific adenosine within the intron. During assembly of the spliceosome's catalytic core, this adenosine is positioned by pairing with a short region of the U2 small nuclear (sn)RNA to form the pre-mRNA branch site helix. The solution structure of the spliceosomal pre-mRNA branch site [Newby,M.I. and Greenbaum,N.L. (2002) Nature Struct. Biol., 9, 958–965] showed that a phylogenetically conserved pseudouridine (ψ) residue in the segment of U2 snRNA that pairs with the intron induces a markedly different structure compared with that of its unmodified counterpart. In order to achieve a more detailed understanding of the factors that contribute to recognition of the spliceosome's branch site helix and activation of the nucleophile for the first step of pre-mRNA splicing, we have calculated surface areas and electrostatic potentials of ψ-modified and unmodified branch site duplexes. There was no significant difference between the total accessible area or ratio of total polar:nonpolar groups between modified and unmodified duplexes. However, there was substantially greater exposure of nonpolar area of the adenine base, and less exposure of the 2′-OH, in the ψ-modified structure. Electrostatic potentials computed using a hybrid boundary element and finite difference nonlinear Poisson–Boltzmann approach [Boschitsch, A.H. and Fenley, M.O. (2004) J. Comput. Chem., 25, 935–955] revealed a region of exceptionally negative potential in the major groove surrounding the 2′-OH of the branch site adenosine. These surface and electrostatic features may contribute to the overall recognition of the pre-mRNA branch site region by other components of the splicing reaction.  相似文献   

18.
The exosome, an evolutionarily conserved complex of multiple 3′→5′ exoribonucleases, is responsible for a variety of RNA processing and degradation events in eukaryotes. In this report Arabidopsis thaliana AtRrp4p is shown to be an active 3′→5′ exonuclease that requires a free 3′-hydroxyl and degrades RNA hydrolytically and distributively, releasing nucleoside 5′-monophosphate products. AtRrp4p behaves as an ~500 kDa species during sedimentation through a 10–30% glycerol gradient, co-migrating with AtRrp41p, another exosome subunit, and it interacts in vitro with AtRrp41p, suggesting that it is also present in the plant cell as a subunit of the exosome. We found that, in addition to a previously reported S1-type RNA-binding domain, members of the Rrp4p family of proteins contain a KH-type RNA-binding domain in the C-terminal half and show that either domain alone can bind RNA. However, only the full-length protein is capable of degrading RNA and interacting with AtRrp41p.  相似文献   

19.
20.
Previous compositional studies of pre-mRNA processing complexes have been performed in vitro on synthetic pre-mRNAs containing a single intron. To provide a more comprehensive list of polypeptides associated with the pre-mRNA splicing apparatus, we have determined the composition of the bulk pre-mRNA processing machinery in living cells. We purified endogenous nuclear pre-mRNA processing complexes from human and chicken cells comprising the massive (>200S) supraspliceosomes (a.k.a. polyspliceosomes). As expected, RNA components include a heterogeneous mixture of pre-mRNAs and the five spliceosomal snRNAs. In addition to known pre-mRNA splicing factors, 5′ end binding factors, 3′ end processing factors, mRNA export factors, hnRNPs and other RNA binding proteins, the protein components identified by mass spectrometry include RNA adenosine deaminases and several novel factors. Intriguingly, our purified supraspliceosomes also contain a number of structural proteins, nucleoporins, chromatin remodeling factors and several novel proteins that were absent from splicing complexes assembled in vitro. These in vivo analyses bring the total number of factors associated with pre-mRNA to well over 300, and represent the most comprehensive analysis of the pre-mRNA processing machinery to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号