首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diphtheria toxin fragment A interacts with Cibacron blue in solution, although it is not retained by blue Sepharose columns. Difference spectral titration of fragment A with the dye gives a dissociation constant of the order of 10–5 M and a 11 stoichiometry for the complex. In equilibrium dialysis experiments Cibacron blue behaves as a competitive inhibitor of the binding of NAD to diphtheria toxin fragment A. The dye inhibits in a non-competitive way the fragment A-catalysed transfer of ADP-ribose from NAD to elongation factor 2 (EF2). By affinity chromatography on blue Sepharose a binding of EF2 and of ADP-ribosyl-EF2 with the dye is also demonstrated. GDP, GTP and GDP(CH2)P are able to displace EF2 from blue Sepharose.  相似文献   

2.
Parikh SL  Schramm VL 《Biochemistry》2004,43(5):1204-1212
Bacterial protein toxins are the most powerful human poisons known, exhibiting an LD(50) of 0.1-1 ng kg(-)(1). A major subset of such toxins is the NAD(+)-dependent ADP-ribosylating exotoxins, which include pertussis, cholera, and diphtheria toxin. Diphtheria toxin catalyzes the ADP ribosylation of the diphthamide residue of eukaryotic elongation factor 2 (eEF-2). The transition state of ADP ribosylation catalyzed by diphtheria toxin has been characterized by measuring a family of kinetic isotope effects using (3)H-, (14)C-, and (15)N-labeled NAD(+) with purified yeast eEF-2. Isotope trapping experiments yield a commitment to catalysis of 0.24 at saturating eEF-2 concentrations, resulting in suppression of the intrinsic isotope effects. Following correction for the commitment factor, intrinsic primary kinetic isotope effects of 1.055 +/- 0.003 and 1.022 +/- 0.004 were observed for [1(N)'-(14)C]- and [1(N)-(15)N]NAD(+), respectively; the double primary isotope effect was 1.066 +/- 0.004 for [1(N)'-(14)C, 1(N)-(15)N]NAD(+). Secondary kinetic isotope effects of 1.194 +/- 0.002, 1.101 +/- 0.003, 1.013 +/- 0.005, and 0.988 +/- 0.002 were determined for [1(N)'-(3)H]-, [2(N)'-(3)H]-, [4(N)'-(3)H]-, and [5(N)'-(3)H]NAD(+), respectively. The transition state structure was modeled using density functional theory (B1LYP/6-31+G) as implemented in Gaussian 98, and theoretical kinetic isotope effects were subsequently calculated using Isoeff 98. Constraints were varied in a systematic manner until the calculated kinetic isotope effects matched the intrinsic isotope effects. The transition state model most consistent with the intrinsic isotope effects is characterized by the substantial loss in bond order of the nicotinamide leaving group (bond order = 0.18, 1.99 A) and weak participation of the attacking imidazole nucleophile (bond order = 0.03, 2.58 A). The transition state structure imparts strong oxacarbenium ion character to the ribose ring even though significant bond order remains to the nicotinamide leaving group. The transition state model presented here is asymmetric and consistent with a dissociative S(N)1 type mechanism in which attack of the diphthamide nucleophile lags behind departure of the nicotinamide.  相似文献   

3.
Measurements of the initial rate of ADP-ribosylation of elongation factor 2 (EF-2) catalyzed by Fragment A from diphtheria toxin support a sequential mechanism and suggest that the reaction proceeds through a central ternary complex involving Fragment A and the substrates, EF-2 and NAD. The Michaelis constants for EF-2 and NAD are 0.15 and 1.4 muM, respectively. As determined by equilibrium gel permeation, EF-2 does not bind Fragment A significantly, alone or in the presence of adenine, ADPribose, nicotinamide or NADH. Based on these and earlier results, we propose an ordered sequential mechanism for the reaction; the sequence of binding of substrates is NAD, followed by EF-2.  相似文献   

4.
It was shown by gel filtration and viscosity measurements that N‐terminal fragment (FA) of diphtheria toxin (DT) can interact with both G‐ and F‐actin (filamentous actin). Elution profiles on Sephadex G‐100 indicated the formation of a binary complex of fragment A (FA) with globular actin monomer (G‐actin), which was inhibited by gelsolin. Deoxyribonuclease I (DNase I) in turn appeared to interact with this complex. Tritiated FA was found to bind to F‐actin stoichiometrically. This binding was inhibited again by gelsolin and G‐actin, but not by DNase I. The binding of FA inhibited polymerization of G‐actin and induced a time‐dependent breakdown of F‐actin under polymerization conditions. Inhibition of its ADP‐ribosyltransferase activity did not have any effect on the interactions of FA with actin. FA interacted with actin also in the cell. After treatment of human umbilical vein endothelial cells (HUVEC) with biotin‐labeled DT, Western blot analysis revealed predominantly the presence of actin in affinity‐isolated complexes of the labeled FA. Similarly, FA was found in immunoaffinity‐isolated complexes of actin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Actin protein has many other cellular functions such as movement, chemotaxis, secretion and cytodiaresis. Besides, it have structural function. Actin is a motor protein that it has an important role in the movement process of toxin in the cell. It is known that F-actin gives carriage support during the endosomal process. Actin is found in globular (G) and filamentous (F) structure in the cell. The helix of actin occurs as a result of polymerisation of monomeric G-actin molecules through sequential rowing, is called F-actin (FA). Actin interacts with a great number of cellular proteins along with cell skeleton and plasma membrane. It is also known that some bacterial toxins have ADP-ribosylation affect on actin. Diphteria toxin is the part which has the FA enzymatic activity corresponding the N-terminal section of the toxin, which inhibits the protein synthesis by ADP-ribosylating the elongation factor 2 in the presence of NAD. FA, taken into the cell by endocytosis inhibits protein synthesis by ADP-ribosyltransferase activity and breaks the cytoskeleton. In the studies both in vitro and in vivo, actin with interaction FA of diphteria toxin has been yet to be fully elucidated. The aim of this study was to determine the three dimensional structures of actin with interaction FA of diphteria toxin by the amprical methods and in paralel with the computing technology, theoretical methods have gained significant importance. In our study, actin with interaction FA of diphteria toxin has been determined as the most possible interaction area with the theoretical method; analogy modelling. This area has been closed in the presence of polypeptides and FA-actin interactions have been tested with the gel filtration chromatography techniques. As a result of the findings, we found that 15 amino acid artificial peptides (DAMYETMAQACAGNR) corresponding to 201–215 amino acid residues of FA interacts with G-actin and closes this area. Secondly, in the model formed with the analogy modelling, it appears that the most possible interaction area is between FA (tyr204) and G-actin (gly48). Results obtained from both theoretical and experimental data support the idea that the interaction occurs in this area.  相似文献   

6.
Diphtheria toxin (DT) binds to the EGF-like domain of the DT receptor (DTR), followed by internalization and translocation of the enzymatically active fragment A into the cytosol. The juxtamembrane domain (JM) of the DTR is the linker domain connecting the transmembrane and EGF-like domains. We constructed mutants of DTRs with altered JMs and studied their abilities for DT intoxication. Although DTR mutants with extended JMs showed normal DT binding activity, the cells expressing the mutants showed both reduced translocation of DT fragment A into the cytosol and reduced sensitivity to DT, when compared with cells expressing wild-type DTR. These results indicate that the JM contributes to DT intoxication by providing a space appropriate for the interaction of DT with the cell membrane. The present study also indicates that consideration of epitopes of an immunotoxins would be an important factor in the design of potent immunotoxins.  相似文献   

7.
Diphtheria toxin (DT) and its N-terminal fragment A (FA) catalyse the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) into a covalent linkage with eukaryotic elongation factor 2 (eEF2). DT-induced cytotoxicity is versatile, and it includes DNA cleavage and the depolymerisation of actin filaments. The inhibition of the ADP-ribosyltransferase (ADPrT) activity of FA did not affect the deoxyribonuclease activity of FA or its interaction with actin. The toxin entry rate into cells (HUVEC) was determined by measuring the ADP-ribosyltransferase activity. DT uptake was nearly 80% after 30 min. The efficiency was determined as Km = 2.2 nM; Vmax = 0.25 pmol.min−1. The nuclease activity was tested with hyperchromicity experiments, and it was concluded that G-actin has an inhibitory effect on DT nuclease activity. In thepresence of DT and mutant of diphtheria toxin (CRM197), F-actin depolymerisation was determined with gel filtration, WB and fluorescence techniques. In the presence of DT and CRM197, 60–65% F-actin depolymerisation was observed. An in vitro FA-actin interaction and F-actin depolymerisation were reported in our previous paper. The present study thus confirms the depolymerisation of actin cytoskeleton in vivo.  相似文献   

8.
Eukaryotic elongation factor 2 (eEF2) mediates translocation in protein synthesis. The molecular mimicry model proposes that the tip of domain IV mimics the anticodon loop of tRNA. His-699 in this region is post-translationally modified to diphthamide, the target for Corynebacterium diphtheriae and Pseudomonas aeruginosa toxins. ADP-ribosylation by these toxins inhibits eEF2 function causing cell death. Mutagenesis of the tip of domain IV was used to assess both functions. A H694A mutant strain was non-functional, whereas D696A, I698A, and H699N strains conferred conditional growth defects, sensitivity to translation inhibitors, and decreased total translation in vivo. These mutant strains and those lacking diphthamide modification enzymes showed increased -1 frameshifting. The effects are not due to reduced protein levels, ribosome binding, or GTP hydrolysis. Functional eEF2 forms substituted in domain IV confer dominant diphtheria toxin resistance, which correlates with an in vivo effect on translation-linked phenotypes. These results provide a new mechanism in which the translational machinery maintains the accurate production of proteins, establishes a role for the diphthamide modification, and provides evidence of the ability to suppress the lethal effect of a toxin targeted to eEF2.  相似文献   

9.
Liposomes as a means to introduce fragment A of diphtheria toxin into cells   总被引:1,自引:0,他引:1  
The incorporation of fragment A of diphtheria toxin into liposomes is described. The intracellular delivery of the entrapped toxin, as evidenced by the inhibition of protein synthesis by a human lymphoblastoid cell line could be demonstrated with liposomes that contained phosphatidylethanolamine or phosphatidylserine in addition to phosphatidylcholine and cholesterol. Free fragment A, either alone or added to empty liposomes of any composition, did not affect protein synthesis, even when present in considerably higher concentrations than the liposome-entrapped form.  相似文献   

10.
Monoclonal antibodies against fragment A of diphtheria toxin were isolated and characterized. Three antibodies with similar affinities for fragment A had different effects on the NAD:EF2-ADP ribose transferase activity of fragment A; i.e., antibody DA1 almost completely inhibited the enzymic activity at a molar ratio of one, whereas DA2 inhibited only partially and DA3 had no effect. However, when fragment A176 from the mutant toxin CRM176 (about 1/10 as active as wild type) was used, DA2 proved a more effective inhibitor than DA1. The affinities of these antibodies for the enzymically inactive mutant fragments, A197 and A228, were significantly less manifest than for wild-type fragment A. Binding of the antibodies to whole toxin and the chain termination mutant CRM45 was weak. When DA2 was introduced into Vero cells growing in monolayers, by using the red cell ghost fusion method, the cells became resistant to CRM176. The anti-fragment A antibodies may serve as the basis of a simple method for selection of cells into which other molecules have been co-introduced.  相似文献   

11.
Conformation and model membrane interactions of diphtheria toxin fragment A   总被引:6,自引:0,他引:6  
Low pH is believed to play a critical role in the penetration of membranes by diphtheria toxin in vivo. In this report, the pH dependence of the conformation of fragment A of diphtheria toxin has been studied using fluorescence techniques. As pH is decreased, fragment A in solution undergoes a reversible conformational change beginning below pH 5. The conformational change occurs rapidly upon exposure to low pH. It involves both an increase in the exposure of tryptophanyl residues to solution and a switch from a hydrophilic state to a hydrophobic state as judged by fragment A binding to micelles of a mild detergent (Brij 96). At low pH fragment A also rapidly and tightly binds to and penetrates model membranes. Binding is reversed when pH is neutralized. The transition pH, the apparent midpoint of the change between the hydrophilic state and the membrane-penetrating hydrophobic state, occurs at about pH 3.5 in the presence of Brij 96 micelles, pH 4 in the presence of small unilamellar vesicles (SUV) composed of zwitterionic phosphatidylcholine, and pH 5 in the presence of SUV composed of 25 mol % anionic phosphatidylglycerol and 75% phosphatidylcholine. The effects of high temperature provide an important clue as to the nature of the changes at low pH. At neutral pH and high temperature, i.e. in the thermally denatured state, a conformational change similar to that observed at low pH occurs, although fragment A does not become hydrophobic. In addition, the effects of low pH and high temperature on the stability of the native state are cumulative. This indicates that the changes in fragment A both at high temperature and at low pH involve denaturation, although there appears to be only partial unfolding under these conditions. Based on the results of this study, the role of fragment A in diphtheria toxin membrane penetration and translocation is evaluated.  相似文献   

12.
13.
Diphtheria toxin fragment A is able to inhibit protein synthesis in the eukaryotic cell by ADP-ribosylating the diphthamide residue of elongation factor-2 (EF-2) [(1980) J. Biol. Chem. 255, 10710-10720]. The reaction requires NAD as ADP-ribose donor. This work reports on the capacity of an NAD analog, the nicotinamide 1-N6-ethenoadenine dinucleotide (epsilon NAD), to be a substrate of diphtheria toxin fragment A in the transferring reaction of the fluorescent moiety, the epsilon ADP-ribose, to the EF-2. As a consequence of the transfer of the epsilon ADP-ribosyl moiety to the EF-2, there is an increase in the emission intensity of the fluorophore and a blue shift in its emission maximum. The epsilon ADP-ribosylated EF-2, like ADP-ribosylated EF-2, retains the capacity to bind GTP and ribosome. The utility of introducing a fluorescent probe in a well defined point of the EF-2 molecule for conformational or binding studies is discussed.  相似文献   

14.
Indirect immunofluorescent microscopy was used to study the distribution of eukaryotic elongation factor 2 (EF-2) in cultured mouse embryo fibroblasts. The perinuclear area (endoplasm) of all the cells and many straight cables running along the whole cytoplasm were stained with monospecific goat or rabbit antibodies to rat liver EF-2. Double staining of the cells with antibodies to EF-2 and rhodaminyl-phalloidin (used for actin microfilament detection) showed that EF-2 containing cables coincided with bundles of actin microfilaments. Not all actin microfilament bundles contained EF-2: sometimes EF-2 was not observed in bundles running along the cell edges or in actin microfilament junctions. Triton X-100 extracted most of EF-2 from the cells and no actin microfilament bundles were stained with the EF-2 antibodies in the Triton-extracted cells. Thus, in mouse embryo fibroblasts EF-2 can be found along actin microfilament bundles, but it is unlikely to be their integral protein.  相似文献   

15.
eEF2K (eukaryotic elongation factor 2 kinase) is a Ca2+/CaM (calmodulin)-dependent protein kinase which regulates the translation elongation machinery. eEF2K belongs to the small group of so-called 'α-kinases' which are distinct from the main eukaryotic protein kinase superfamily. In addition to the α-kinase catalytic domain, other domains have been identified in eEF2K: a CaM-binding region, N-terminal to the kinase domain; a C-terminal region containing several predicted α-helices (resembling SEL1 domains); and a probably rather unstructured 'linker' region connecting them. In the present paper, we demonstrate: (i) that several highly conserved residues, implicated in binding ATP or metal ions, are critical for eEF2K activity; (ii) that Ca2+/CaM enhance the ability of eEF2K to bind to ATP, providing the first insight into the allosteric control of eEF2K; (iii) that the CaM-binding/α-kinase domain of eEF2K itself possesses autokinase activity, but is unable to phosphorylate substrates in trans; (iv) that phosphorylation of these substrates requires the SEL1-like domains of eEF2K; and (v) that highly conserved residues in the C-terminal tip of eEF2K are essential for the phosphorylation of eEF2, but not a peptide substrate. On the basis of these findings, we propose a model for the functional organization and control of eEF2K.  相似文献   

16.
The molecular nature of the protein-protein interactions between the catalytic domain from Pseudomonas aeruginosa exotoxin A (PE24H) and its protein substrate, eukaryotic elongation factor-2 (eEF-2) were probed using a fluorescence resonance energy transfer method. Single cysteine mutant proteins of PE24H were prepared and site-specifically labeled with the donor fluorophore IAEDANS (5-(2-iodoacetylaminoethylamino)-1-napthalenesulfonic acid), whereas eEF-2 was labeled with the acceptor fluorophore fluorescein. The association was found to be independent of ionic strength and of the co-substrate, NAD(+) but dependent upon pH. The lack of requirement for NAD(+) to produce the toxin-eEF-2 complex demonstrates that the catalytic process is a random order mechanism, thereby disputing the current model. The previously observed pH dependence for catalytic function can be assigned to the toxin-eEF-2 binding event, as the pH dependence of binding observed in this study showed a strong correlation with enzymatic activity. The ability of the toxin to bind eEF-2 with bound GTP/GDP was assessed using nonhydrolyzable analogues. The results from the substrate binding and catalytic activity experiments indicate that PE24H is able to interact and bind with eEF-2 in all of its guanyl nucleotide-induced conformational states. Thus, the toxin ribosylates eEF-2 regardless of the nucleotide-charged state of eEF-2. These results represent the first detailed characterization of the molecular details and physiological conditions governing this protein-protein interaction.  相似文献   

17.
《The Journal of cell biology》1996,135(5):1309-1321
Elongation factor 1 alpha (EF1 alpha) is an abundant protein that binds aminoacyl-tRNA and ribosomes in a GTP-dependent manner. EF1 alpha also interacts with the cytoskeleton by binding and bundling actin filaments and microtubules. In this report, the effect of purified EF1 alpha on actin polymerization and depolymerization is examined. At molar ratios present in the cytosol, EF1 alpha significantly blocks both polymerization and depolymerization of actin filaments and increases the final extent of actin polymer, while at high molar ratios to actin, EF1 alpha nucleates actin polymerization. Although EF1 alpha binds actin monomer, this monomer-binding activity does not explain the effects of EF1 alpha on actin polymerization at physiological molar ratios. The mechanism for the inhibition of polymerization is related to the actin-bundling activity of EF1 alpha. Both ends of the actin filament are inhibited for polymerization and both bundling and the inhibition of actin polymerization are affected by pH within the same physiological range; at high pH both bundling and the inhibition of actin polymerization are reduced. Additionally, it is seen that the binding of aminoacyl-tRNA to EF1 alpha releases EF1 alpha's inhibiting effect on actin polymerization. These data demonstrate that EF1 alpha can alter the assembly of F-actin, a filamentous scaffold on which non- membrane-associated protein translation may be occurring in vivo.  相似文献   

18.
19.
The translocation of the enzymatic moiety of diphtheria toxin, fragment A, across the membranes of pure lipid vesicles was demonstrated. A new assay, which employed vesicles made to contain radiolabeled NAD and elongation factor-2, was used to measure the appearance of the enzymatic activity of the A fragment in the vesicles. When the vesicles were exposed to a low-pH medium in the presence of diphtheria toxin, small molecules, such as NAD, escaped into the extravesicular medium, whereas large molecules mostly remained inside the vesicles. The vesicle-entrapped elongation factor-2 became ADP-ribosylated, indicating the entry of fragment A into the vesicle. The translocation of the A fragment depended upon the pH of the medium, being negligible at pH greater than 7.0 and maximal at pH 4.5. The entire toxin molecule was needed for function; neither the A fragment nor the B fragment alone was able to translocate itself across and react with the sequestered substrates. After exposure of the toxin to low pH, the entry of the A fragment was rapid, being virtually complete within 2-3 min at pH 5.5, and within 1 min at pH 4.7. Translocation occurred in the absence of any protein in the vesicle membrane. These results are consistent with the notion that the diphtheria toxin molecule enters the cytoplasm of a cell by escaping from an acidic compartment such as an endocytic vesicle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号