共查询到20条相似文献,搜索用时 0 毫秒
1.
M. K. ASPLEN J. B. WHITFIELD J. G. DE BOER G. E. HEIMPEL 《Journal of evolutionary biology》2009,22(8):1762-1769
We provide the first phylogenetic evidence supporting complementary sex determination (CSD) as the ancestral mechanism for haplodiploidy in the Hymenoptera. It is currently not possible, however, to distinguish the evolutionary polarity of single locus (sl) CSD and multiple‐locus (ml) CSD given the available data. In this light, we discuss the seemingly maladaptive hypothesis of ml‐CSD ancestry, suggesting that collapse from ml‐CSD to sl‐CSD should remain a viable evolutionary hypothesis based on (i) likely weakening of frequency‐dependent selection on sex alleles under ml‐CSD and (ii) recent findings with respect to the evolutionary novelty of the complementary sex determiner gene in honeybees. Our findings help provide a phylogenetically informed blueprint for future sampling of sex determination mechanisms in the Hymenoptera, as they yield hypotheses for many unsampled or ambiguous taxa and highlight taxa whose further sampling will influence reconstruction of the evolutionary polarity of sex determination mechanisms in major clades. 相似文献
2.
Heath Blackmon Nate B. Hardy Laura Ross 《Evolution; international journal of organic evolution》2015,69(11):2971-2978
Haplodiploid reproduction, in which males are haploid and females are diploid, is widespread among animals, yet we understand little about the forces responsible for its evolution. The current theory is that haplodiploidy has evolved through genetic conflicts, as it provides a transmission advantage to mothers. Male viability is thought to be a major limiting factor; diploid individuals tend to harbor many recessive lethal mutations. This theory predicts that the evolution of haplodiploidy is more likely in male heterogametic lineages with few chromosomes, as genes on the X chromosome are often expressed in a haploid environment, and the fewer the chromosome number, the greater the proportion of the total genome that is X‐linked. We test this prediction with comparative phylogenetic analyses of mites, among which haplodiploidy has evolved repeatedly. We recover a negative correlation between chromosome number and haplodiploidy, find evidence that low chromosome number evolved prior to haplodiploidy, and that it is unlikely that diplodiploidy has reevolved from haplodiploid lineages of mites. These results are consistent with the predicted importance of haploid male viability. 相似文献
3.
4.
5.
昆虫性别决定机制存在多样性和复杂性,其中膜翅目昆虫的性别决定由单双倍体决定,单倍体为雄性,二倍体为雌性。本文就膜翅目昆虫的性别决定模式和分子机制进行综述。膜翅目昆虫性别决定有6种模式,即互补性性别决定(complementary sex determination, CSD)、多位点互补性性别决定(multiple-locus CSD, ml-CSD)、基因组印记、母体效应、内共生体诱导产雌单性生殖、父本遗传基因组消除(paternal genome elimination, PGE)。其中,CSD机制是目前在膜翅目昆虫中普遍接受的性别决定模式。而蜜蜂的CSD性别决定机制是膜翅目昆虫性别决定模式中的典型代表,受csd→fem→dsx这一调控级联的控制。 相似文献
6.
7.
Josphine Queffelec Amy L. Wooding Jaco M. Greeff Jeffrey R. Garnas Brett P. Hurley Michael J. Wingfield Bernard Slippers 《Ecology and evolution》2019,9(14):7966-7973
Sirex noctilio is an economically important invasive pest of commercial pine forestry in the Southern Hemisphere. Newly established invasive populations of this woodwasp are characterized by highly male‐biased sex ratios that subsequently revert to those seen in the native range. This trend was not observed in the population of S. noctilio from the summer rainfall regions in South Africa, which remained highly male‐biased for almost a decade. The aim of this study was to determine the cause of this persistent male bias. As an explanation for this pattern, we test hypotheses related to mating success, female investment in male versus female offspring, and genetic diversity affecting diploid male production due to complementary sex determination. We found that 61% of females in a newly established S. noctilio population were mated. Microsatellite data analysis showed that populations of S. noctilio from the summer rainfall regions in South Africa are far less genetically diverse than those from the winter rainfall region, with mean Nei's unbiased gene diversity indexes of 0.056 and 0.273, respectively. These data also identified diploid males at low frequencies in both the winter (5%) and summer (2%) rainfall regions. The results suggest the presence of a complementary sex determination mechanism in S. noctilio, but imply that reduced genetic diversity is not the main driver of the male bias observed in the summer rainfall region. Among all the factors considered, selective investment in sons appears to have the most significant influence on male bias in S. noctilio populations. Why this investment remains different in frontier or early invasive populations is not clear but could be influenced by females laying unfertilized eggs to avoid diploid male production in populations with a high genetic relatedness. 相似文献
8.
Sex is ancestral in eukaryotes. Meiotic sex differs from bacterial ways of exchanging genetic material by involving the fusion of two cells. We examine the hypothesis that fusion evolved in early eukaryotes because it was directly beneficial, rather than a passive side effect of meiotic sex. We assume that the uptake of (proto)mitochondria into eukaryotes preceded the evolution of cell fusion and that Muller's ratchet operating within symbiont lineages led to the accumulation of lineage‐specific sets of mutations in asexual host cells. We examine whether cell fusion, and the consequent biparental inheritance of symbionts, helps to mitigate the effects of this mutational meltdown of mitochondria. In our model, host cell fitness improves when two independently evolved mitochondrial strains co‐inhabit a single cytoplasm, mirroring mitochondrial complementation found in modern eukaryotes. If fusion incurs no cost, we find that an allele coding for fusion can invade a population of nonfusers. If fusion is costly, there are two thresholds. The first describes a maximal fusing rate (probability of fusion per round of cell division) that is able to fix. An allele that codes for a rate above this threshold can reach a polymorphic equilibrium with nonfusers, as long as the rate is below the second threshold, above which the fusion allele is counter‐selected. Whenever it evolves, fusion increases the population‐wide level of heteroplasmy, which allows mitochondrial complementation and increases population fitness. We conclude that beneficial interactions between mitochondria are a potential factor that selected for cell fusion in early eukaryotes. 相似文献
9.
10.
Normark BB 《Evolution; international journal of organic evolution》2006,60(4):631-642
The genetic systems of animals and plants are typically eumendelian. That is, an equal complement of autosomes is inherited from each of two parents, and at each locus, each parent's allele is equally likely to be expressed and equally likely to be transmitted. Genetic systems that violate any of these eumendelian symmetries are termed asymmetric and include parent-specific gene expression (PSGE), haplodiploidy, thelytoky, and related systems. Asymmetric genetic systems typically arise in lineages with close associations between kin (gregarious siblings, brooding, or viviparity). To date, different explanatory frameworks have been proposed to account for each of the different asymmetric genetic systems. Haig's kinship theory of genomic imprinting argues that PSGE arises when kinship asymmetries between interacting kin create conflicts between maternally and paternally derived alleles. Greater maternal than paternal relatedness within groups selects for more \"abstemious\" expression of maternally derived alleles and more \"greedy\" expression of paternally derived alleles. Here, I argue that this process may also underlie origins of haplodiploidy and many origins of thelytoky. The tendency for paternal alleles to be more \"greedy\" in maternal kin groups means that maternal-paternal conflict is not a zero-sum game: the maternal optimum will more closely correspond to the optimum for family groups and demes and for associated entities such as symbionts. Often in these circumstances, partial or complete suppression of paternal gene expression will evolve (haplodiploidy, thelytoky), or other features of the life cycle will evolve to minimize the conflict (monogamy, inbreeding). Maternally transmitted cytoplasmic elements and maternally imprinted nuclear alleles have a shared interest in minimizing agonistic interactions between female siblings and may cooperate to exclude the paternal genome. Eusociality is the most dramatic expression of the conflict-reducing effects of haplodiploidy, but its original and more widespread function may be suppression of intrafamilial cannibalism. In rare circumstances in which paternal gene products gain access to maternal physiology via a placenta, PSGE with greedy paternal gene expression can persist (e.g., in mammals). 相似文献
11.
Yanega's (1997) mating limitation hypothesis (MLH) states that if a female mates promptly after emerging, she then becomes a member of the maximally reproductive behavioral caste (i.e., in most cases an overwintering gyne). Females that do not mate early become workers. We tested the MLH in laboratory colonies of a eusocial population of Evylaeus albipes. Of 24 worker brood females (13 from queenright and 11 from orphaned nests), 13 mated on the first day of flight activity and all mated within the first 5 days; there were no significant differences between mating rates of females from the two colony types. All 24 commenced foraging as workers after an average of between 3 and 4 days postmating. We conclude that the MLH does not apply to this species despite the fact that the only known halictine for which this hypothesis has been experimentally tested is the fairly closely related E. marginatus. 相似文献
12.
Christoph Vorburger Christoph Sandrock Alexandre Gouskov Luis E. Castañeda Julia Ferrari 《Evolution; international journal of organic evolution》2009,63(6):1439-1450
Models of host–parasite coevolution predict pronounced genetic dynamics if resistance and infectivity are genotype-specific or associated with costs, and if selection is fueled by sufficient genetic variation. We addressed these assumptions in the black bean aphid, Aphis fabae , and its parasitoid Lysiphlebus fabarum . Parasitoid genotypes differed in infectivity and host clones exhibited huge variation for susceptibility. This variation occurred at two levels. Clones harboring Hamiltonella defensa , a bacterial endosymbiont known to protect pea aphids against parasitoids, enjoyed greatly reduced susceptibility, yet clones without H. defensa also exhibited significant variation. Although there was no evidence for genotype-specificity in the H. defensa -free clones' interaction with parasitoids, we found such evidence in clones containing the bacterium. This suggests that parasitoid genotypes differ in their ability to overcome H. defensa , resulting in an apparent host × parasitoid genotype interaction that may in fact be due to an underlying symbiont × parasitoid genotype interaction. Aphid susceptibility to parasitoids correlated negatively with fecundity and rate of increase, due to H. defensa -bearing clones being more fecund on average. Hence, possessing symbionts may also be favorable in the absence of parasitoids, which raises the question why H. defensa does not go to fixation and highlights the need to develop new models to understand the dynamics of endosymbiont-mediated coevolution. 相似文献
13.
Michail Rovatsos Jasna Vuki? Petros Lymberakis Luká? Kratochvíl 《Proceedings. Biological sciences / The Royal Society》2015,282(1821)
Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. 相似文献
14.
膜翅目昆虫单双倍体性别决定机制(雄性是单倍体、雌性是二倍体)在昆虫纲的进化中有非常重要的作用。通常膜翅目昆虫的性别由单一位点的等位基因决定,杂合体发育成雌性,半合体发育成雄性。在近亲繁殖的情况下,一定数目的雄性会出现纯合二倍体,由于遗传阻隔这种二倍体的雄性通常是不育的。csd基因的发现为膜翅目昆虫性别决定机制提供了分子生物学证据。文章探讨CSD的分子生物学基础,对膜翅目昆虫sl-CSD的分布进行综述并且探讨膜翅目昆虫降低二倍体雄性消耗的策略以及可能存在的进化机制,最后提出几点建议以便从遗传学、生态学以及进化生物学角度全面的了解sl-CSD。 相似文献
15.
Gene E. Robinson 《Journal of insect physiology》1985,31(4):277-282
Worker honey bees treated with 250 μg of the juvenile hormone analogue methoprene shifted from the broodnest to the food storage region prematurely and displayed precocious foraging behaviour. Treatments with 25 and 2.5 μg caused slight but non-significant effects. Methoprene did not influence individual foraging performance as measured by mean number of foraging trips/h, mean amount of time spent foraging/h or mean duration of the total foraging period. Methoprene also induced premature production of two alarm pheromones, 2-heptanone and isopentyl acetate. These results support the hypothesis that juvenile hormone regulates temporal division of labour in the honey bee colony. 相似文献
16.
Undertakers are a specialized task group of honey bees that remove dead bees from the colony. The mean adult age of undertakers is 12.5 days; this is similar to that of other specialized task groups, such as guards. The mean number of undertakers in colonies was 544. However, because the number of bees expressing this behavior is dependent on the demand for task performance, undertaker estimates vary depending on the experimental technique. Increasing the demand for undertaking resulted in more bees engaging in the task. Depleting the number of undertakers by removal of bees carrying corpses resulted in new bees assuming undertaking duties. These results support a response-threshold model for engagement of worker bees in task performance. 相似文献
17.
R. J. PAXTON P. A. THORÉN N. GYLLENSTRAND J. TENGÖ 《Biological journal of the Linnean Society. Linnean Society of London》2000,69(4):483-502
The mechanism of sex determination assumed widespread in parthenogenetically arrhen-otokous Hymenoptera is that of single locus complementary sex determination (CSD). Functionally sterile diploid males are produced under CSD and generate a genetic load, the cost of which increases with inbreeding. We quantify diploid male production (DMP, proportion of diploid individuals that are male) using a morphological criterion (adult fresh weight) and genetical (microsatellite DNA) markers in a communal, sexually size-dimorphic bee, Andrma scotica , which inbreeds. Male genotypes suggested a DMP of 0.003. The inbreeding coefficient, f , was significandy positive (+ 0.165), equivalent to 44% of matings being among full sibs (predicted DMP of 0.11). We hypothesize three non-mutually exclusive explanations to account for the large difference between the low observed (in males) and high expected (derived fromy f for females) DMP: (i) multilocus CSD, (ii) 'sex allele signalling' tied to mate selection, and (iii) sperm selection within mated females. The costs of inbreeding through DMP are apparendy low in A. scotica . 相似文献
18.
The solitary wasp Euodynerus foraminatus has single-locus complementary sex determination (sl-CSD), which is normally incompatible with inbreeding because it increases the production of sterile or inviable diploid males. Previous field observations of E. foraminatus have suggested that high levels of sibling mating are present in this species. However, conclusions about inbreeding and its genetic consequences could be flawed if based solely upon behavioural observations. Through microsatellite DNA genotyping of 102 E. foraminatus females in southwest Michigan, we estimate that between 55% and 77% of the matings in this population take place between siblings, but the frequency of diploid males is lower than expected. Our data suggest that a mixture of inbreeding and outbreeding persists in E. foraminatus despite the presence of sl-CSD. 相似文献
19.
20.
David O. Conover David A. Van Voorhees Amir Ehtisham 《Evolution; international journal of organic evolution》1992,46(6):1722-1730
What happens when a population with environmental sex determination (ESD) experiences a change to an extreme environment that causes a highly unbalanced sex ratio? Theory predicts that frequency-dependent selection would increase the proportion of the minority sex and decrease the level of ESD in subsequent generations. We empirically modeled this process by maintaining five laboratory populations of a fish with temperature-dependent sex determination (the Atlantic silverside, Menidia menidia) in extreme constant temperature environments that caused highly skewed sex ratios to occur initially. Increases in the minority sex consistently occurred from one generation to the next across all five populations, first establishing and then maintaining a balanced sex ratio until termination of the experiment at 8 to 10 generations. The extent to which the level of ESD changed as balanced sex ratios evolved, however, was not consistent. Two populations that experienced high temperatures each generation displayed a loss of ESD, and in one of these ESD was virtually eliminated. This suggests that temperature-insensitive, sex-determining genes were being selected. In populations maintained in low temperature environments, however, the level of ESD did not decline. Instead, the response of sex ratio to temperature was adjusted upward or downward, perhaps by selection of sex-determining genes sensitive to higher (or lower) temperatures. The two different outcomes at low versus high temperatures occurred independent of the geographic origin of the founding population. Our results demonstrate that ESD is capable of evolving in response to selection. 相似文献