首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to an elevated CO(2) concentration ([CO(2)]) generally decreases leaf N content per unit area (N(area)) and stomatal density, and increases leaf thickness. Mature leaves can 'sense' elevated [CO(2)] and this regulates stomatal development of expanding leaves (systemic regulation). It is unclear if systemic regulation is involved in determination of leaf thickness and N(area)-traits that are significantly correlated with photosynthetic capacity. A cuvette system was used whereby [CO(2)] around mature leaves was controlled separately from that around expanding leaves. Expanding leaves of poplar (Populus trichocarpa×P. deltoides) seedlings were exposed to elevated [CO(2)] (720 μmol mol(-1)) while the remaining mature leaves inside the cuvette were under ambient [CO(2)] of 360 μmol mol(-1). Reverse treatments were performed. Exposure of newly developing leaves to elevated [CO(2)] increased their thickness, but when mature leaves were exposed to elevated [CO(2)] the increase in thickness of new leaves was less pronounced. The largest response to [CO(2)] was reflected in the palisade tissue thickness (as opposed to the spongy tissue) of new leaves. The N(area) of new leaves was unaffected by the local [CO(2)] where the new leaves developed, but decreased following the exposure of mature leaves to elevated [CO(2)]. The volume fraction of mesophyll cells compared with total leaf and the mesophyll cell density changed in a manner similar to the response of N(area). These results suggest that N(area) is controlled independently of the leaf thickness, and suggest that N(area) is under systemic regulation by [CO(2)] signals from mature leaves that control mesophyll cell division.  相似文献   

2.
The CO? respired by darkened, light-adapted, leaves is enriched in 13C during the first minutes, and this effect may be related to rapid changes in leaf respiratory biochemistry upon darkening. We hypothesized that this effect would be evident at the ecosystem scale. High temporal resolution measurements of the carbon isotope composition of ecosystem respiration were made over 28 diel periods in an abandoned temperate pasture, and were compared with leaf-level measurements at differing levels of pre-illumination. At the leaf level, CO? respired by darkened leaves that had been preadapted to high light was strongly enriched in 13C, but such a 13C-enrichment rapidly declined over 60-100 min. The 13C-enrichment was less pronounced when leaves were preadapted to low light. These leaf-level responses were mirrored at the ecosystem scale; after sunset following clear, sunny days respired CO? was first 13C enriched, but the 13C-enrichment rapidly declined over 60-100 min. Further, this response was less pronounced following cloudy days. We conclude that the dynamics of leaf respiratory isotopic signal caused variations in ecosystem-scale 12CO?/13) CO? exchange. Such rapid isotope kinetics should be considered when applying 13C-based techniques to elucidate ecosystem carbon cycling.  相似文献   

3.
CO2 fixing microbes are the species primarily engaged in complexing the inorganic carbon dioxide to organic carbon compounds. There are many microorganisms from archaeal and bacterial domain that can fix carbon dioxide through six known CO2 fixing pathways. These organisms are ubiquitous and can survive in wide range of aerobic and anaerobic habitats. This review focuses on the prior research, that has been conducted in this field and presents a summarized overview of all the mechanisms (along with their genes and enzymes) used by these microbes for CO2 incorporation. In addition, this review provides a better understanding of diversity and taxonomy of CO2 fixing microorganisms. The information presented here will motivate researchers to further explore the diversity of CO2 fixing microorganisms as well as to decipher the underlying mechanisms of CO2 utilization.  相似文献   

4.
Stable operation of photosynthesis is based on the establishment of local equilibria of metabolites in the Calvin cycle. This concerns especially equilibration of stromal contents of adenylates and pyridine nucleotides and buffering of CO2 concentration to prevent its depletion at the sites of Rubisco. Thermodynamic buffering that controls the homeostatic flux in the Calvin cycle is achieved by equilibrium enzymes such as glyceraldehyde phosphate dehydrogenase, transaldolase and transketolase. Their role is to prevent depletion of ribulose-1,5-bisphosphate, even at high [CO2], and to maintain conditions where the only control is exerted by the CO2 supply. Buffering of adenylates is achieved mainly by chloroplastic adenylate kinase, whereas NADPH level is maintained by mechanisms involving alternative sinks for electrons both within the chloroplast (cyclic phosphorylation, chlororespiration, etc.) and shuttling of reductants outside chloroplast (malate valve). This results in optimization of carbon fixation in chloroplasts, illustrating the principle that the energy of light is used to support stable non-equilibrium which drives all living processes in plants.  相似文献   

5.
Light response (at 300 ppm CO(2) and 10-50 ppm O(2) in N(2)) and CO(2) response curves [at absorbed photon fluence rate (PAD) of 550 μmol m(-2) s(-1)] of O(2) evolution and CO(2) uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO(3)(-) or NH(4)(+) as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH(4)NO(3). Photosynthetic O(2) evolution in excess of CO(2) uptake was measured with a stabilized zirconia O(2) electrode and an infrared CO(2) analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO(2), mainly NO(2)(-), SO(4)(2-), and oxaloacetate. In NO(3)(-)-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O(2)-CO(2) flux difference rapidly increased to about 1 μmol m(-2) s(-1) at very low PADs and the process was saturated at 50 μmol quanta m(-2) s(-1). At higher PADs the O(2)-CO(2) flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m(-2) s(-1). In NH(4)(+)-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O(2) evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO(2)(-) which successfully competes with CO(2) reduction and saturates at a rate of about 1 μmol O(2) m(-2) s(-1) (9% of the maximum O(2) evolution rate). The high-PAD component of about 1 μmol O(2) m(-2) s(-1), superimposed on NO(2)(-) reduction, may represent oxaloacetate reduction. The roles of NO(2)(-), oxaloacetate, and O(2) reduction in the regulation of ATP/NADPH balance are discussed.  相似文献   

6.
Dubinsky AY  Ivlev AA 《Bio Systems》2011,103(2):285-290
The computational analysis of the model system consisting of the processes of CO2 assimilation and photorespiration shows the appearance of sustained oscillations in the system which might reflect their presence in photosynthesizing cells. Concentrations of CO2 and O2 oscillate in opposite phases causing Rubisco switching continuously between the carboxylase (CO2 assimilation) and the oxygenase (photorespiration) reactions. The results of modeling are consistent with carbon isotopic and other observed data. They show that the oscillation period varies from about 1 s to 3 s depending on the values of parameters taken. Too high concentrations of O2 suppress the oscillations.  相似文献   

7.
Reactive oxygen species (ROS), normally generated in skeletal muscles, could control excitability of muscle fibers through redox modulation of membrane ion channels. However, the mechanisms of ROS action remain largely unknown. To investigate the action of ROS on electrical properties of muscle cells, patch-clamp recordings were performed after application of hydrogen peroxide (H2O2) to skeletal myotubes. H2O2 facilitated sodium spikes after a hyperpolarizing current pulse, by decreasing the latency for spike initiation. Importantly, the antioxidant N-acetylcysteine induced the opposite effect, suggesting the redox control of muscle excitability. The effect of H2O2 was abolished in the presence of catalase. The kinetics of sodium channels were not affected by H2O2. However, the fast inward rectifier K+ (KIR) currents, activated by hyperpolarization, were reduced by H2O2, similar to the action of the potassium channel blockers Ba2+ and Cs+. The block of the outward tail current contributing to KIR deactivation can explain the shorter latency for spike initiation. We propose that the KIR current is an important target for ROS action in myotubes. Our data would thus suggest that ROS are involved in the control of the excitability of myotubes and, possibly, in the oscillatory behavior critical for the plasticity of developing muscle cells.  相似文献   

8.
Mesophyll conductance (g(m)) is now recognized as an important limiting process for photosynthesis, as it results in a significant decrease of CO(2) diffusion from substomatal cavities where water evaporation occurs, to chloroplast stroma. Over the past decade, an increasing number of studies proposed that g(m) can vary in the short term (e.g. minutes), but these variations are still controversial, especially those potentially induced by changing CO(2) and irradiance. In this study, g(m) data estimated with online (13)C discrimination recorded with a tunable diode laser absorption spectrometer (TDL-AS) during leaf gas exchange measurements, and based on the single point method, are presented. The data were obtained with three Eucalyptus species. A 50% decrease in g(m) was observed when the CO(2) mole fraction was increased from 300 μmol mol(-1) to 900 μmol mol(-1), and a 60% increase when irradiance was increased from 200 μmol mol(-1) to 1100 μmol mol(-1) photosynthetic photon flux density (PPFD). The relative contribution of respiration and photorespiration to overall (13)C discrimination was also estimated. Not taking this contribution into account may lead to a 50% underestimation of g(m) but had little effect on the CO(2)- and irradiance-induced changes. In conclusion, (i) the observed responses of g(m) to CO(2) and irradiance were not artefactual; (ii) the respiratory term is important to assess absolute values of g(m) but has no impact on the responses to CO(2) and PPFD; and (iii) increasing irradiance and reducing the CO(2) mole fraction results in rapid increases in g(m) in Eucalyptus seedlings.  相似文献   

9.
10.
Mun S  Baek Y  Kim C  Lee YW  Yoon J 《Biofouling》2012,28(6):627-633
Physical cleaning and/or chemical cleaning have been generally used to control biofouling in the reverse osmosis (RO) process. However, conventional membrane cleaning methods to control biofouling are limited due to the generation of by-products and the potential for damage to the RO membranes. In this study, supercritical carbon dioxide (SC CO(2)) treatment, an environmentally friendly technique, was introduced to control biofouling in the RO process. SC CO(2) (100 bar at 35°C) treatment was performed after biofouling was induced on a commercial RO membrane using Pseudomonas aeruginosa PA01 GFP as a model bacterial strain. P. aeruginosa PA01 GFP biofilm cells were reduced on the RO membrane by >8 log within 30 min, and the permeate flux was sufficiently recovered in a laboratory-scale RO membrane system without any significant damage to the RO membrane. These results suggest that SC CO(2) treatment is a promising alternative membrane cleaning technique for biofouling in the RO process.  相似文献   

11.
In the present study, a new online monitoring method for the determination of the CO? sensitivity of micro-organisms, based on the values of the respiration factors [OTR (oxygen transfer rate) and CTR (carbon dioxide transfer rate)], obtained by using the RAMOS (respiratory activity monitoring system) device considering a variety of aeration rates in the measuring flask, is investigated. Based on the data of the OTR, obtained by RAMOS under a variety of specific aeration rates, the proposed new method was developed as an online monitoring method for CO? sensitivity of micro-organisms in shaken bioreactors. A maximum accumulated CO? concentration of 12% was derived in applied methods, provided that the cultivation system is carried out under optimal conditions. Additionally, to predict these conditions, an unsteady-state gas transfer model in shaken bioreactors would be very advantageous. The data of OTR obtained using the RAMOS device were analysed and recalculated by a programme considering the calibration factor (Cf). The major advantage of the new method is the possibility to determine the metabolic activity, regardless of manual sampling.  相似文献   

12.
We examined the degree to which ventilatory sensitivity to rising body temperature (the slope of the regression line relating ventilation and body temperature) is altered by restoration of arterial PCO(2) to the eucapnic level during prolonged exercise in the heat. Thirteen subjects exercised for ~60 min on a cycle ergometer at 50% of peak O(2) uptake with and without inhalation of CO(2)-enriched air. Subjects began breathing CO(2)-enriched air at the point that end-tidal Pco(2) started to decline. Esophageal temperature (T(es)), minute ventilation (V(E)), tidal volume (V(T)), respiratory frequency (f(R)), respiratory gases, middle cerebral artery blood velocity, and arterial blood pressure were recorded continuously. When V(E), V(T), f(R), and ventilatory equivalents for O(2) uptake (V(E)/VO(2)) and CO(2) output (V(E)/VCO(2)) were plotted against changes in T(es) from the start of the CO(2)-enriched air inhalation (ΔT(es)), the slopes of the regression lines relating V(E), V(T), V(E)/VO(2), and V(E)/VCO(2) to ΔT(es) (ventilatory sensitivity to rising body temperature) were significantly greater when subjects breathed CO(2)-enriched air than when they breathed room air (V(E): 19.8 ± 10.3 vs. 8.9 ± 6.7 l·min(-1)·°C(-1), V(T): 18 ± 120 vs. -81 ± 92 ml/°C; V(E)/VO(2): 7.4 ± 5.5 vs. 2.6 ± 2.3 units/°C, and V(E)/VCO(2): 7.6 ± 6.6 vs. 3.4 ± 2.8 units/°C). The increase in Ve was accompanied by increases in V(T) and f(R). These results suggest that restoration of arterial PCO(2) to nearly eucapnic levels increases ventilatory sensitivity to rising body temperature by around threefold.  相似文献   

13.
The problem of climate change arising mainly from CO? emission is currently a critical environmental issue. Biofixation using microalgae has recently become an attractive approach to CO? capture and recycling with additional benefits of downstream utilization and applications of the resulting microalgal biomass. This review summarizes the history and strategies of microalgal mitigation of CO? emissions, photobioreactor systems used to cultivate microalgae for CO? fixation, current microalgae harvesting methods, as well as applications of valuable by-products. It is of importance to select appropriate microalgal species to achieve an efficient and economically feasible CO?-emission mitigation process. The desired microalgae species should have a high growth rate, high CO? fixation ability, low contamination risk, low operation cost, be easy to harvest and rich in valuable components in their biomass.  相似文献   

14.
Physical CO(2) diffusion from sub-stomatal cavities to the chloroplasts where photosynthesis takes place is an important limitation of photosynthesis largely neglected in research related to global climate change. This limitation is particularly important in leaves with robust structures such as evergreen sclerophylls. In these leaves, photosynthesis is less sensitive to changes in stomatal openness, which is considered to be the primary limitation of photosynthesis. In this review we state that, because of large limitations in internal diffusion in C(3) plants, photosynthesis and the intrinsic efficiency of the use of plant water responds more strongly to elevated levels of CO(2) in leaves with more robust structures. This provides an additional explanation for the current apparent expansion of evergreen sclerophylls in many Earth ecosystems, and adds a new perspective to research of the biological effects of increasing atmospheric CO(2).  相似文献   

15.
? While studies of modern plants indicate negative responses to low [CO?] that occurred during the last glacial period, studies with glacial plant material that incorporate evolutionary responses are rare. In this study, physiological responses to changing [CO?] were compared between glacial (La Brea tar pits) and modern Juniperus trees from southern California. ? Carbon isotopes were measured on annual rings of glacial and modern Juniperus. The intercellular:atmospheric [CO?] ratio (c(i) /c(a) ) and intercellular [CO?] (c(i) ) were then calculated on an annual basis and compared through geologic time. ? Juniperus showed constant mean c(i) /c(a) between the last glacial period and modern times, spanning 50,000 yr. Interannual variation in physiology was greatly dampened during the last glacial period relative to the present, indicating constraints of low [CO?] that reduced responses to other climatic factors. Furthermore, glacial Juniperus exhibited low c(i) that rarely occurs in modern trees, further suggesting limiting [CO?] in glacial plants. ? This study provides some of the first direct evidence that glacial plants remained near their lower carbon limit until the beginning of the glacial-interglacial transition. Our results also suggest that environmental factors that dominate carbon-uptake physiology vary across geologic time, resulting in major alterations in physiological response patterns through time.  相似文献   

16.
The purpose of this study was to quantify the physiological requirements of various boxing exercises such as sparring, pad work, and punching bag. Because it was not possible to measure the oxygen uptake (VO?) of "true" sparring with a collecting gas valve in the face, we developed and validated a method to measure VO? of "true" sparring based on "postexercise" measurements. Nine experienced male amateur boxers (Mean ± SD: age = 22.0 ± 3.5 years, height = 176.0 ± 8.0 cm, weight = 71.4 ± 10.9 kg, number of fights = 13.0 ± 9.5) of regional and provincial level volunteered to participate in 3 testing sessions: (a) maximal treadmill test in the LAB, (b) standardized boxing training in the GYM, and (c) standardized boxing exercises in the LAB. Measures of VO?, heart rate (HR), blood lactate concentration [LA], rated perceived exertion level, and punching frequencies were collected. VO? values of 43.4 ± 5.9, 41.1 ± 5.1, 24.7 ± 6.1, 30.4 ± 5.8, and 38.3 ± 6.5 ml·kg?1·min?1 were obtained, which represent 69.7 ± 8.0, 66.1 ± 8.0, 39.8 ± 10.4, 48.8 ± 8.5, and 61.7 ± 10.3%VO?peak for sparring, pad work, and punching bag at 60, 120, and 180 b·min?1, respectively. Except for lower VO? values for punching the bag at 60 and 120 b·min?1 (p < 0.05), there was no VO? difference between exercises. Similar pattern was obtained for %HRmax with respective values of 85.5 ± 5.9, 83.6 ± 6.3, 67.5 ± 3.5, 74.8 ± 5.9, and 83.0 ± 6.0. Finally, sparring %HRmax and [LA] were slightly higher in the GYM (91.7 ± 4.3 and 9.4 ± 2.2 mmol·L?1) vs. LAB (85.5 ± 5.9 and 6.1 ± 2.3 mmol·L?1). Thus, in this study simulated LAB sparring and pad work required similar VO? (43-41 ml·kg?1·min?1, respectively), which corresponds to ~70%VO?peak. These results underline the importance of a minimum of aerobic fitness for boxers and draw some guidelines for the intensity of training.  相似文献   

17.
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD, which in turn donates an electron to O2, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.  相似文献   

18.
In C3 leaves, the mesophyll conductance to CO2 diffusion, gm, determines the drawdown in CO2 concentration from intercellular airspace to the chloroplast stroma. Both gm and stomatal conductance limit photosynthetic rate and vary in response to the environment. We investigated the response of gm to changes in CO2 in two Arabidopsis genotypes (including a mutant with open stomata, ost1), tobacco and wheat. We combined measurements of gas exchange with carbon isotope discrimination using tunable diode laser absorption spectroscopy with a CO2 calibration system specially designed for a range of CO2 and O2 concentrations. CO2 was initially increased from 200 to 1000 ppm and then decreased stepwise to 200 ppm and increased stepwise back to 1000 ppm, or the sequence was reversed. In 2% O2 a step increase from 200 to 1000 ppm significantly decreased gm by 26–40% in all three species, whereas following a step decrease from 1000 to 200 ppm, the 26–38% increase in gm was not statistically significant. The response of gm to CO2 was less in 21% O2. Comparing wild type against the ost1 revealed that mesophyll and stomatal conductance varied independently in response to CO2. We discuss the effects of isotope fractionation factors on estimating gm.  相似文献   

19.
Zhang H  Good DJ 《Lab animal》2011,40(10):313-318
Focused-beam microwave irradiation (FBMI) is a relatively new method for euthanasia of small mammals and is available to most researchers. Compared with CO? inhalation, this method of euthanasia has the advantage of preserving fast-degrading metabolites. But differences in brain RNA quantity and quality, gene expression and histology in mice euthanized by CO? inhalation versus FBMI have not been investigated. Here the authors report that a smaller quantity of RNA was isolated from brains of mice euthanized by FBMI compared with those of mice euthanized by CO? inhalation. They also found relative differences in the levels of the expression of some genes. These studies suggest that either method can be used for histological analysis or RNA isolation, but the authors caution against combining the techniques within a single study on gene expression.  相似文献   

20.
Influence of carbon dioxide on growth and product kinetics of industrially important micro-organisms is essential for the interpretation of a bioprocess. In this research, the CO? effects on productivity and growth rate of micro-organisms have been studied by using a variety of kplug. The applied method is based on a different concentration of CO? in the headspace of ventilation flasks. The presented method is simple, inexpensive and shows similar results compared to large-scale fermentation regarding the evolution of CO? in a batch system. For the investigation of the proposed method, experiments employing Arxula adeninivorans LS3, Corynebacterium glutamicum (DM1730 and ATCC WT13032) and Hansenula polymorpha DSM70277 as model organisms in the ventilation flasks are performed. The fermentations in the RAMOS (respiratory activity monitoring system) device were carried out with a normal aeration rate (1 vvm) and under the same operating conditions as the ventilation flask f1. The modified unsteady-state model was used to predict the operation conditions of a biological system in the ventilation flasks. In the present study, a novel and easy method for the quantification of CO? sensitivity of micro-organisms in shaken bioreactors (called ventilation flask) was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号