首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanical arrangement of the PD organ of Cancer has been studied and equations derived which relate its length to the articulation angle of the PD joint and to the angle which the receptor strand makes with the dactylopodite flexor tendon. These relationships are discussed in the light of the anatomy of the PD articulation.  相似文献   

2.
In semi‐intact preparations of the crab Cancer pagurus the normal output from the stomatogastric ganglion (StG) was a regular pyloric cycle (Figure 4). Repeated stimulation of the posterior stomach nerve (psn) of the posterior gastric mill proprioceptor (PSR) often induced series of spontaneous gastric cycles. We were therefore able to describe the normal gastric cycle as recorded in the output nerves from StG and to identify most of the relevant motor neurones by reference to the muscles that they innervate (Figure 10). The gastric cycle output was variable (Figures 5, 6), although in many preparations one complex type of output predominated (Figure 7). The basic feature of the gastric cycle was an alternation of activity between the single cardio‐pyloric neurone (CP) and a complex variable burst in the lateral cardiac (LC), the gastro‐pyloric (GP), the gastric (GM), and other associated neurones. During this normally occurring complex gastric burst significant changes occurred in the pyloric cycle, notably an increase in activity of the pacemaker pyloric dilator (PD) group and an inhibition of the lateral pyloric (LP), inferior cardiac (IC) and ventricular dilator (VD) neurones (Figures 6, 7, 8, 9). These changes are probably associated with an opening of the cardio‐pyloric valve and food passage into the pyloric filter. The gastric output was related to the normally observed movements of the dorsal ossicles of the gastric mill and thus to the operation of the teeth of the mill (Figure 11). Increased input from the PSR is associated with the grinding action of the teeth which is caused by the complex gastric burst (Figure 12).

Stimulation of the psn during an ongoing regular pyloric output caused changes in the cycle which mimicked those occurring during the spontaneous gastric cycle (Figure 13; Table 1). Stimulation of the psn during ongoing gastric activity also affected the gastric units (Figure 14). The input pathway from the PSR is shown to be through the stomatogastric nerve (sgn), the connection between the commissural ganglia and the stomatogastric ganglion (Figure 15). The commissural ganglia are known to receive most of the sensory input from the foregut and PSR input is probably processed there. Recordings from the sgn show that psn stimulation activates a small number of centrally originating units, and that the activity of these units coincides with the pyloric output changes (Figures 15, 16). We therefore label the units command interneurones. Their effects could be mediated by direct connections to only the PD pacemaker neurones of the pyloric cycle. Control experiments showed that PSR input is not necessary for the pyloric output changes to occur during gastric output but that similar output changes can be evoked by input resulting from induced gastric movements (Figure 15(E)). We think that the pyloric cycle output changes are normally controlled by a number of mechanisms at different levels (Figure 17). We cannot easily explain the effects of PSR input on the gastric cycle neurones.

These findings are important because they allow us to study a specific input to the StG without disrupting its normal input‐output pathways to the central nervous system. Further experiments on the system designed to test the assumption that the sgn units are in fact responsible for the pyloric output changes, and to investigate the processing of the PSR input are outlined.  相似文献   

3.
Muscular tension and sensory activity in the flexor apodeme sensory nerve were recorded during stimulation of single motor afferents innervating the M‐C flexor. Muscular tension and unitary sensory activity both varied, depending upon the motor fiber stimulated. Differences in the abililty of individual motor fibers to elicit sensory activity were only partially accounted for by differences in tension development. Some tension afferent units were more readily excited by a muscular contraction elicited by one motor axon than they were by another, even when the tension elicited by the more effective motor fiber was less than that evoked by the less effective efferent.  相似文献   

4.
The primary purpose of this investigation was to determine the effects of microgravity on muscle fibers of the predominantly fast-twitch muscles in the rat. Cross sectional area and myosin heavy chain (MHC) composition were assessed in order to establish the acute effects of microgravity associated with spaceflight. The extensor digitorum longus (EDL) and gastrocnemius muscles were removed from 12 male Fisher 344 rats which had undergone 10 days of spaceflight aboard the space shuttle Endeavor and from 12 age- and weight-matched control animals. Both groups of animals received similar amounts of food and water and were synchronized for photoperiods, environmental temperature, and humidity. Significant (P < 0.05) reductions in muscle fiber size were observed in the gastrocnemius (fiber types I, IIA, IIDB, and IIB) and EDL (fiber type IIB) muscles after spaceflight. Significant MHC isoform transformations also resulted during this brief period of microgravity exposure with a significant decrease in MHC IId isoform in the EDL muscle. A significant decrease was also observed in the MHC IId isoform in the superficial (white) component of the gastrocnemius muscle after spaceflight, although no alterations in MHC profile were demonstrated in the deep (red) component of this muscle. These findings highlight the rapid plasticity of skeletal muscle during short-term spaceflight. If such pronounced adaptations to spaceflight also occur in humans, then astronauts are likely to suffer severe decrements in skeletal muscle performance with long-term space flight and upon return to earth after both short- and long-term missions. Thus, countermeasures aimed at slowing or even preventing muscle fiber atrophy are warranted.  相似文献   

5.
The chemical constituents of the cell wall of Piricularia oryzae, the pathogenic fungus of rice blast disease, were studied with the aids of chemical analysis, X-ray diffraction, infra-red absorption and enzymatic degradation. The sugar constituents were identified by chromatography as glucose (62%), mannose (4%), galactose (0.5%), and hexosamine (13%). The acidic amino acid rich protein was comprised 4.6% in the cell wall. The cell wall consists of at least three different polysaccharide complexes: a) α-Heteropolysaccharide protein complex containing mannose, glucose and galactose, b) β-1,3-Glucan containing β-1, 6-linked branch, c) Chitin like substance.  相似文献   

6.
7.
The positive inotropic effect of isoproterenol was quantified in the presence of several beta-adrenergic blocking agents in ventricular strips of carp heart. Isoproterenol had a concentration-dependent positive inotropic effect. The effect was markedly inhibited by propranolol and carteolol, but was extremely insensitive to atenolol. Practolol totally failed to alter the effect. These results indicated that the positive inotropic effect of isoproterenol may be mediated by mostly beta-2 adrenergic receptors in ventricular strips of carp heart.  相似文献   

8.
9.
The metabolic response of the crab Carcinus maenas to short‐term hypoxia (60% and 35% saturated seawater) was studied at 17.5°C in fed, 3 day‐unfed and 6 day‐unfed crabs.

Ammonia excretion rate decreased under hypoxia: a 40% and 45% decrease in the normoxic rate was observed in fed crabs at 35% saturation and in 3 day‐unfed crabs at both hypoxic levels respectively. In the 6 day‐unfed crabs, the effect of hypoxia was concealed by the effect of starvation.

Oxygen consumption rate was directly related to the external O2 tension irrespective of the crab's nutritional state. Stressed crabs behaved as a whole, as oxygen‐conformers.

A strong relationship was observed between ammonia excretion and oxygen consumption rates in fed crabs under hypoxia but not in starved crabs.  相似文献   

10.

The ghost crab Ocypode stimpsoni displays waving and sound production. Sounds are produced by thumping the sand substratum with the major cheliped, and two types of sounds can be discriminated; one with a low frequency of about 12 Hz, called rapping, and another with a higher frequency (about double), called quivering. In our observations, a sequence of waving and sound emission would sometimes terminate abruptly, or appear as independent components but the component order never changed. The most frequently observed patterns were “waving with rapping and quivering”;, “waving with quivering”; and “quivering only”; quivering sounds being involved in more than 80% displays. Quivering sometimes occurred immediately after crabs emerged from the burrow, or when they returned to the entrance after discarding an excavated sand mass. The occurrence frequency of waving and sounds, the wave amplitude, and the frequency of the sound increased when other crabs approached.  相似文献   

11.
The theoretical framework for the field of cancer research is based on two main principles. The first is that cancer advances in a stepwise manner, with each alteration driving cells further toward a malignant state. Second, to cure cancer we must target only cancer-specific properties. Here, we analyze the birth and propagation of the cancer research paradigm. We believe the current paradigm is immersed in crisis and that the field would benefit from integrating theories within and outside the normal modes of research to compile a new framework, with the hope of faster progress and significantly fewer cancer-related deaths.  相似文献   

12.
Infections of the hemolymph of crabs by ciliates have been known for almost a century. Originally placed in the genus Anophrys, these crab-parasitizing ciliates have been recently transferred to the genus Paranophrys. Infections were long thought to be confined to the hemolymph in living crabs, with death caused by consumption of all hemocytes. Histological examination of heavily infected, but living, Dungeness crabs demonstrate that the ciliates actively invade and probably consume many tissues of the host prior to death rather than saprophytically feeding on the decomposing tissues subsequent to death as previously reported.  相似文献   

13.
Pancreatic ductal adenocarcinomas are desmoplastic and hypoxic, both of which are associated with poor prognosis. Hypoxia-activated prodrugs (HAPs) are specifically activated in hypoxic environments to release cytotoxic or cytostatic effectors. TH-302 is a HAP that is currently being evaluated in a Phase III clinical trial in pancreatic cancer. Using animal models, we show that tumor hypoxia can be exacerbated using a vasodilator, hydralazine, improving TH-302 efficacy. Hydralazine reduces tumor blood flow through the “steal” phenomenon, in which atonal immature tumor vasculature fails to dilate in coordination with normal vasculature. We show that MIA PaCa-2 tumors exhibit a “steal” effect in response to hydralazine, resulting in decreased tumor blood flow and subsequent tumor pH reduction. The effect is not observed in SU.86.86 tumors with mature tumor vasculature, as measured by CD31 and smooth muscle actin (SMA) immunohistochemistry staining. Combination therapy of hydralazine and TH-302 resulted in a reduction in MIA PaCa-2 tumor volume growth after 18 days of treatment. These studies support a combination mechanism of action for TH-302 with a vasodilator that transiently increases tumor hypoxia.  相似文献   

14.
The Coleoptera provides an excellent example of the value of fossils for understanding the evolutionary patterns of recent lineages. We reevaluate the morphology of the Early Permian †Tshekardocoleidae to test alternative phylogenetic hypotheses relating to the Palaeozoic evolution of the order. We discuss prior interpretations and revise an earlier data matrix. Both Bayesian and parsimony analyses support the monophyly of Coleoptera excluding †Tshekardocoleidae (= Mesocoleoptera), and of Coleoptera excluding †Tshekardocoleidae and †Permocupedidae (= Metacoleoptera). Plesiomorphies preserved in †Tshekardocoleidae are elytra, which rest over the body in a loose tent-like manner, with flat lateral flanges, projecting beyond the abdominal apex, and abdomens that are flexible and nearly cylindrical. Apomorphies of Mesocoleoptera include shortening of the elytra and a closer fit with the flattened and probably more rigid abdomen. A crucial synapomorphy of Metacoleoptera is the tightly sealed subelytral space, which may have been advantageous during the Permian aridification. Taxon exclusion experiments show that †Tshekardocoleidae is crucial for understanding the early evolution of Coleoptera and that its omission strongly affects ancestral state polarities as well as topology, including crown-group taxa. By constraining the relationships of extant taxa to match those supported by phylogenomic analysis, we demonstrate that features shared by Archostemata with Permian stem groups are most reasonably supported as plesiomorphic and that the smooth and simplified body forms of Polyphaga, Adephaga, Myxophaga, and Micromalthidae were derived in parallel. Our study highlights the reciprocal illumination of molecular, morphological, and paleontological data, and paves the way for tip-dating analysis across the order.  相似文献   

15.
Intracarotid infusions of noradrenaline (0.15 nmol · kg−1 · min−1) either alone or accompanied by phentolamine (1.5 nmol · kg−1 · min−1) caused similar-sized increases in salivary protein, magnesium and bicarbonate, and decreases in osmolality, sodium, potassium and chloride whereas intravenous noradrenaline stimulated much smaller responses. Concurrent infusions of the β1-antagonist, CGP20712A, blocked these noradrenaline-induced changes in salivary composition more effectively than equimolar infusions of the β2-antagonist, ICI118551, thereby confirming the presence of β1-adrenoceptors. Intracarotid infusion of salbutamol at 0.15, 0.3 and 1.5 nmol · kg−1 · min−1 caused increasing but qualitatively similar changes in salivary composition, sodium excepted, to intracarotid noradrenaline with 0.3 nmol being most similar quantitatively. Intravenous infusion of salbutamol caused larger changes in salivary composition than equimolar intravenous noradrenaline thereby indicating that the response to salbutamol may, in part, be mediated by reflex increases in general sympathetic tone triggered by lowered blood pressure. Eliminating this hypotensive effect by concurrent intravenous and intracarotid infusions of β1-(CGP or atenolol) and β2-(ICI118551) antagonists with intracarotid salbutamol showed that ICI118551 was more potent than the β1-antagonists thereby demonstrating the presence of β2-receptors. It was concluded that the kangaroo mandibular has functional β1- and β2-adrenoceptor subtypes in both endpieces and excurrent ducts and that the duct system has two populations of cells, each expressing one receptor subtype. Accepted: 26 July 2000  相似文献   

16.
Though morphine remains the most powerful drug for treating pain, its effectiveness is limited by the development of tolerance and dependence. The mechanism underlying development of tolerance to morphine is still poorly understood. One of the factors could be an alteration in the number of Μ-receptors within specific parts of the nervous system. However, reports on changes in the Μ-opioid receptor density in the spinal cord after chronic morphine administration are conflicting. Most of the studies have used subcutaneously implanted morphine pellets to produce tolerance. However, it does not simulate clinical conditions, where it is more common to administer morphine at intervals, either by injections or orally. In the present study, rats were made tolerant to morphine by injecting increasing doses of morphine (10-50 mg/kg, subcutaneously) for five days.In vitro tissue autoradiography for localization of Μ-receptor in the spinal cord was done using [3H]-DAMGO. As compared to the spinal cord of control rats, the spinal cord of tolerant rats showed an 18.8% increase or up-regulation in the density of Μ-receptors in the superficial layers of the dorsal horn. This up-regulation of Μ-receptors after morphine tolerance suggests that a fraction of the receptors have been rendered desensitized, which in turn could lead to tolerance  相似文献   

17.
The aim of this paper was to analyse the active dispersal of Triatoma infestans and the role of chickens as passive carriers of this insect in peridomestic areas of La Rioja, Argentina. To measure active dispersal, monthly catches were made on six consecutive nights for five months (in the warm season) using light traps (for flying insects) and sticky dispersal barriers (for walking insects). The nutritional and reproductive states of adults were evaluated. Over the course of the sampling period, a total of eight flying adults, six walking nymphs and 10 walking adults of the species T. infestans were captured, as well as specimens of Triatoma guasayana, Triatoma eratyrusiformis and Triatoma platensis. Our data demonstrate for the first time that females of T. infestans can disperse by walking. This may be an adaptive strategy because it allows them to move with eggs and/or with good blood reserves, which are not possible when flying. All flying and walking individuals of both genders were of an appropriate physiological state that would allow for colonisation of the target habitat. However, manual inspection of 122 chickens suggests that it is unlikely that these animals passively transport T. infestans. Finally, the dispersal activity of T. infestans was compared with other triatomines using a dispersion index.  相似文献   

18.
Solid tumors are characterized by regions of low oxygen tension (OT), which play a central role in tumor progression and resistance to therapy. Low OT affects mitochondrial function and for the cells to survive, mitochondria must functionally adapt to low OT to maintain the cellular bioenergetics. In this study, a novel experimental approach was developed to examine the real-time bioenergetic changes in breast cancer cells (BCCs) during adaptation to OT (from 20% to <1% oxygen) using sensitive extracellular flux technology. Oxygen was gradually removed from the medium, and the bioenergetics of metastatic BCCs (MDA-MB-231 and MCF10CA clones) was compared with non-tumorigenic (MCF10A) cells. BCCs, but not MCF10A, rapidly responded to low OT by stabilizing HIF-1α and increasing HIF-1α responsive gene expression and glucose uptake. BCCs also increased extracellular acidification rate (ECAR), which was markedly lower in MCF10A. Interestingly, BCCs exhibited a biphasic response in basal respiration as the OT was reduced from 20% to <1%. The initial stimulation of oxygen consumption is found to be due to increased mitochondrial respiration. This effect was HIF-1α-dependent, as silencing HIF-1α abolished the biphasic response. During hypoxia and reoxygenation, BCCs also maintained oxygen consumption rates at specific OT; however, HIF-1α silenced BCC were less responsive to changes in OT. Our results suggest that HIF-1α provides a high degree of bioenergetic flexibility under different OT which may confer an adaptive advantage for BCC survival in the tumor microenvironment and during invasion and metastasis. This study thus provides direct evidence for the cross-talk between HIF-1α and mitochondria during adaptation to low OT by BCCs and may be useful in identifying novel therapeutic agents that target the bioenergetics of BCCs in response to low OT.  相似文献   

19.
Summary In gills of the shore crab Carcinus maenas an ATPase activity was found which was stimulated by bicarbonate and inhibited by low concentration of oligomycin and thiocyanate. This ATPase was activated by small hydrated alkali cations, i.e., activation was absent in the presence of Li+, small in the presence of Na+, and highest in the presence of K+ (K m=4 mM). Inhibitor studies using ouabain, NEM, and vanadate suggest that this ATPase is different from (Na++K+)-ATPase, the H+-ATPase of organelles, or an E 1 E 2-type ATPase represented by the H+/K+-ATPase in gastric mucosa. Results obtained by differential and density gradient centrifugation indicate that this ATPase is located in crab gill mitochondria, a location ruling out its direct participation in transepithelial ion transport. Since the ATPase lacked specific Cl--activation it is not considered to be a Cl- pump but a mitochondrial F 1 F 0-ATPase. Specific activities of mitochondrial ATPase and (Na++K+)-ATPase were of comparable magnitude. Both ATPases were greatly increased in gills of crabs acclimated to brackish water (salinity 10) compared to crabs maintained in sea water (30). These results imply that low salinity-induced modifications in branchial tissues include mechanisms for active ion uptake as well as the elements for provision of cellular energy.Abbreviations ATPase adenosine triphosphatase - HEPES N-(2-hydroxyethyl)-1-piperazine-N(2-ethanesulfonic acid) - LDH lactate dehydrogenase - NADH reduced nicotinamide adenine dinucleotide - NEM Niethylmaleimide - PEP phosphoenolpyruvate - PK pyruvate kinase - TRIS TRIS (hydroxymethyl)aminomethane - S salinity  相似文献   

20.
The movements of the bailer during normal ventilation can be resolved into two components, a cycle of pronation and supination being superimposed on a cycle of protraction and retraction. Pronation leads protraction with a phase angle of about 90° in a normal cycle. Pronation is accompanied by flexion of the bailer.

The skeletal anatomy of the bailer is such as to restrict movements of the bailer to those described above. Further the pronated and supinated positions of the limb represent the two stable positions of a skeletal click mechanism, the operation of which may help to resolve the functional duality of the promotor and remotor muscles.

This functional duality arises because the muscles are positioned so as to produce either protraction or supination of the limb. Other muscles in the limb are monofunctional. The bulk of muscle tissue responsible for protraction and supination seems to be greater than that responsible for pronation and retraction.

The sequence of muscular activity during the ventilation cycle follows that expected for a sequence, of protraction, supination, retraction and pronation. Overlap in the periods of activity of the bifunctional muscles and muscles responsible for pronation may also help to resolve the functional duality of the former.

The amplitude of bailer excursion (protraction‐retraction) is not greatly affected by changes in frequency. An advance in the onset of activity in some muscles at higher ventilation ? frequencies suggests that the system is tailored to produce a constant beat amplitude at all frequencies.

Pauses in ventilation occur with the bailer in the retracted position, and it is maintained in this position by tonic activity in the appropriate muscle. During normal ventilation the relative contraction duration of this muscle is positively correlated with cycle period, so that pauses apparently represent a prolongation of the normal retracted phase. The relative contraction durations of some other muscles are negatively correlated with cycle period. The different signs of these correlations may be related to the type of endogenous oscillator present in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号