首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A well-marked hierarchy of centres can be recognized within the suboesophageal lobes and ganglia of the arms. The inputs and outputs of each lobe are described. There are sets of motoneurons and intermediate motor centres, which can be activated either from the periphery or from above. They mostly do not send fibres up to the optic or higher motor centres. However, there is a large set of fibres running from the magnocellular lobe to all the basal supraoesophageal lobes. The centre for control of the four eye-muscle nerves in the anterior lateral pedal lobe receives many fibres direct from the statocyst and from the peduncle and basal lobes, but none direct from the optic lobe. The posterior lateral pedal is a backward continuation of the oculomotor centre, containing large cells that may be concerned in initiating attacks by the tentacles. An intermediate motor centre in the posterior pedal lobe probably controls steering. It sends fibres to the funned and head retractors, and by both direct and interrupted pathways to the fin lobe. It receives fibres from the crista nerve and basal lobes, but none direct from the optic lobe. The jet control centre of the ventral magnocellular lobe receives fibres from the statocyst and skin and also from the optic and basal lobes. Some of these last also give extensive branches throughout the palliovisceral lobes. The branching patterns of the dendritic collaterals differ in the various lobes. Some estimates are given of the numbers of synaptic points. The dendritic collaterals of the motoneurons spread through large volumes of neuropil and they overlap. The incoming fibres spread widely and each presumably activates many motoneurons either together or serially. Many of the lobes contain numerous microneurons with short trunks restricted to the lobe, but there are none of these cells in the chromatophore lobes or fin lobes. The microneurons have only few dendritic collaterals, in contrast to the numerous ones on the nearby motoneurons.  相似文献   

2.
Summary A large deutocerebral serotonin-immunoreactive neuron arborizes profusely in the glomeruli of the antennal lobes, and also sends neurites into the lateral lobe and the calyces of the mushroom bodies in the ipsilateral protocerebrum. Electron micrographs of the glomerular neuropil show that the main synapses of the serotonin-immunoreactive arborizations are output contacts with unidentified neuron profiles. Only a few synaptic input contacts with serotonin-labeled fibers were observed.  相似文献   

3.
Differential interference contrast micrographs from stretched animals, serially sectioned semi-thin and ultrathin sections revealed that the cerebral ganglia (supraoesophageal mass) of the eulardigrade Milnesium tardigradum lie above the buccal tube and adjacent tissue like a saddle. It has an anterior indentation which is penetrated by two muscles that arise from the cuticle of the forehead. The cerebral ganglia consist of lateral outer lobes bearing an eye on each side, and two inner lobes which extend caudally. Between the inner lobes a cone-like projection tapers into a nerve bundle. Each outer lobe is joined with the first ventral ganglion. From the outer lobe near the eye the ganglion for a posterolateral sensory field extends to the epidermis. Anterior to the supraoesophageal mass are three dorsal ganglia for the upper three peribuccal papillae. Two additional ganglia attached to the cerebral mass supply the lateral cephalic papillae. The cerebral ganglia are covered by a thin neural lamella. The pericarya which surround the neuropil have large nuclei. Near the axons in the centre of the supraoesophageal mass the cytoplasm is crowded with vesicles of different size and appearance. Some of them resemble synaptic vesicles while others resemble dense core bodies. Structurally different types of synapses and axons can be distinguished within the neuropil.  相似文献   

4.
A large deutocerebral serotonin-immunoreactive neuron arborizes profusely in the glomeruli of the antennal lobes, and also sends neurites into the lateral lobe and the calyces of the mushroom bodies in the ipsilateral protocerebrum. Electron micrographs of the glomerular neuropil show that the main synapses of the serotonin-immunoreactive arborizations are output contacts with unidentified neuron profiles. Only a few synaptic input contacts with serotonin-labeled fibers were observed.  相似文献   

5.
The distribution of neuropeptide Y (NPY)-like immunoreactivity and its colocalization with FMRFamide were investigated in the optic lobe and peduncle complex of the octopus ( Octopus vulgaris) by using immunohistochemical techniques. In the optic lobe cortex, NPY-immunoreactive (NPY-IR) fibers were observed in the plexiform layer, although no NPY-IR somata were observed in the outer or inner granular cell layers. In the optic lobe medulla, NPY-IR somata were seen in the cell islands, and abundant NPY-IR varicose fibers were observed in the neuropil. Most of the NPY-IR structures in the medulla showed FMRFamide-like immunoreactivity. In the peduncle lobe, abundant NPY-IR and FMRFamide-IR (NPY/FMRF-IR) varicose fibers were seen in the basal zone neuropil of the peduncle lobe. In the olfactory lobe, NPY/FMRF-IR varicose fibers were also abundant in the neuropil of the three lobules. NPY/FMRF-IR somata, with processes running to various neuropils, were scattered in the median and posterior lobules. In the optic gland, many NPY/FMRF-IR varicose fibers formed a honeycomb pattern. These observations suggest that NPY/FMRF-IR neurons in the optic lobes participate in the modulation of visual information and that those in the optic gland are involved in the regulation of endocrine function.  相似文献   

6.
Summary Antiserum to arginine-vasopressin has been used to characterise the pair of vasopressin-like immunoreactive (VPLI) neurons in the locust. These neurons have cell bodies in the suboesophageal ganglion, each with a bifurcating dorsal lateral axon which gives rise to predominantly dorsal neuropilar branching in every ganglion of the ventral nerve cord. There are extensive beaded fibre plexuses in most peripheral nerves of thoracic and abdominal ganglia, but in the brain, the peripheral plexuses are reduced while neuropilar branching is more extensive, although it generally remains superficial. An array of fibres runs centripetally through the laminamedulla chiasma in the optic lobes. Lucifer Yellow or cobalt intracellular staining of single VPLI cells in the adult suboesophageal ganglion shows that all immunoreactive processes emanate from these two neurons, but an additional midline arborisation (that was only partially revealed by immunostaining) was also observed. Intracellularly staining VPLI cells in smaller larval instars, which permits dye to reach the thoracic ganglia, confirms that there is no similar region of poorly-immunoreactive midline arborisation in these ganglia. It has been previously suggested that the immunoreactive superficial fibres and peripheral plexuses in ventral cord ganglia serve a neurohaemal function, releasing the locust vasopressin-like diuretic hormone, F2. We suggest that the other major region of VPLI arborisation, the poorly immunoreactive midline fibres in the suboesophageal ganglion, could be a region where VPLI cells receive synaptic input. The function of the centripetal array of fibres within the optic lobe is still unclear.Abbreviations AVP arginine vasopressin - DIT dorsal intermediate tract - FLRF Phe-Leu-Arg-Phe - FMRF-amide Phe-Met-Arg-Phe-amide - LDT lateral dorsal tract - LVP lysine vasopressin - MDT median dorsal tract - MVT median ventral tract - SEM scanning electron microscopy - SOG suboesophageal ganglion - VIT ventral intermediate tract - VNC ventral nerve cord - VPLI vasopressin-like immunoreactive  相似文献   

7.
We have investigated the distribution of tyrosine-hydroxylase-like immunoreactivity in the cerebral ganglia of the American cockroach, Periplaneta americana. Groups of tyrosine-hydroxylase-immunoreactive cell bodies occur in various parts of the three regions of the cerebral ganglia. In the protocerebrum, single large neurons or small groups of neurons are located in the lateral neuropil, adjacent to the calyces, and in the dorsal portion of the pars intercerebralis. Small scattered cell bodies are found in the outer layers of the optic lobe, and clusters of larger cell bodies can be found in the deutocerebrum, medial and lateral to the antennal glomeruli. Thick bundles of tyrosine-hydroxylase-positive nerve fibers traverse the neuropil in the proto- and deutocerebrum and innervate the glomerular and the nonglomerular neuropil with fine varicose terminals. Dense terminal patterns are present in the medulla and lobula of the optic lobe, the pars intercerebralis, the medial tritocerebrum, and the area surrounding the antennal glomeruli, the central body and the mushroom bodies. The pattern of tyrosine-hydroxylase-like immunoreactivity is similar to that previously described for catecholaminergic neurons, but it is distinctly different from the distribution of histaminergic and serotonergic neurons.  相似文献   

8.
We have investigated the distribution of oxytocin/vasopressin (OT/VP) superfamily peptides in the central nervous system (CNS) of the cuttlefish, Sepia officinalis, by using antibodies raised against mammalian OT and VP. Several populations of OT-like and VP-like immunoreactive cell bodies and fibers were widely distributed in cerebral structures involved in learning processes (vertical lobe complex, optic lobes), behavioral communication (peduncle, lateral basal and chromatophore lobes), feeding behavior (inferior frontal, brachial and buccal lobes), sexual activity (dorsal basal, subpedunculate, olfactory lobes), and metabolism (visceral lobes). The two most remarkable findings of this study were the occurrence of OT-like immunoreactivity in many amacrine cells of the vertical lobe and the dense accumulation of VP-like immunoreactive cell bodies in the subpedunculate 1 lobe. No double-immunolabeled cell bodies or fibers were found in any lobes of the CNS, indicating, for the first time in a decapod cephalopod mollusc, the existence of distinct oxytocinergic-like and vasopressinergic-like systems. The widespread distribution of the immunoreactive neurons suggests that these OT-like and VP-like peptides act as neurotransmitters or neuromodulators. This research was supported by grants from the “Région Basse-Normandie” (FRANCE) and the LARC-Neurosciences network (FRANCE).  相似文献   

9.
Summary We examined the distribution of immunoreactivity to serotonin (5-HT), leu-enkephalin (LENK), tyrosine-hydroxylase (TH), and substance P (SP) within the primary visceral sensory region of cartilaginous fish. Two genera of sharks, Squalus and Heterodontus, a skate, Raja, a ray, Myliobatis, and a holocephalian, Hydrolagus, were used. Cranial nerves, VII, IX, and X enter the visceral sensory complex from the lateral aspect and divide it into lobes. Based on sagittally cut sections, there are four lobes in Hydrolagus and five in Squalus, corresponding to the number of gill arches. The neurochemicals are differentially distributed within each lobe. LENK+ and 5-HT+fibers are located in all regions within the visceral sensory complex. SP+fibers are extremely dense in a dorsolateral subdivision and do not extend as far ventrally as 5-HT+ and LENK+fibers. The lobes lack 5-HT+cells, but contain a few LENK+ and SP+cells. Many TH+cells are distributed in dorsomedial portions of the complex, but there are few TH+fibers. Thus, the visceral sensory area of cartilaginous fish contains several divisions that can be distinguished by their neurochemical content.  相似文献   

10.
Summary The structure of ommatidia at the dorsal eye margin of the fly, Calliphora erythrocephala is specialized for the detection of the e-vector of polarized light. Marginal zone ommatidia are distinguished by R7/R8 receptor cells with large-diameter, short, untwisted rhabdomeres and long axons to the medulla. The arrangement of the R7 microvillar directions along the marginal zone is fan-shaped. Ommatidia lining the dorsal and frontal edge of the eye lack primary screening pigments and have foreshortened crystalline cones. The marginal ommatidia from each eye view a strip that is 5 °–20 ° contralateral to the fly's longitudinal axis and that coincides with the outer boundaries of the binocular overlap.Cobalt injection into the retina demonstrates that photoreceptor axons arising from marginal ommatidia define a special area of marginal neuropil in the second visual neuropil, the medulla. Small-field neurons arising from the marginal medulla area define, in turn, a special area of marginal neuropil in the two deepest visual neuropils, the lobula and the lobula plate. From these arise local assemblies of columnar neurons that relay the marginal zones of one optic lobe to equivalent areas of the opposite lobe and to midbrain regions from which arise descending neurons destined for the the thoracic ganglia.Optically, the marginal zone of the retina represents the lateral edge of a larger area of ommatidia involved in dorsofrontal binocular overlap. This binocularity area is also represented by special arrangements of columnar neurons, which map the binocularity area of one eye into the lobula beneath the opposite eye. Another type of binocularity neuron terminates in the midbrain.These neuronal arrangements suggest two novel features of the insect optic lobes and brain: (1) Marginal neurons that directly connect the left and right optic lobes imply that each lobe receives a common input from areas of the left and right eye, specialized for detecting the pattern of polarized light. (2) Information about the e-vector pattern of sky-light polarization may be integrated with binocular and monocular pathways at the level of descending neurons leading to thoracic motor neuropil.  相似文献   

11.
The brain architecture in four species of tapeworms from the order Trypanorhyncha has been studied. In all species, the brain consists of paired anterior and lateral lobes, and an unpaired central lobe. The anterior lobes connect by dorsal and ventral semicircular commissures; the central and lateral lobes connect by a median and an X-shaped crisscross commissure. In the center of the brain, five well-developed compact neuropils are present. The brain occupies a medial position in the scolex pars bothrialis. The ventral excretory vessels are situated outside the lateral lobes of the brain; the dorsal excretory vessels are located inside the brain and dorsal to the median commissure. The brain gives rize four anterior proboscis nerves and four posterior bulbar nerves with myelinated giant axons (GAs). The cell bodies of the GAs are located within the X-commissure and in the bulbar nerves. Highly developed serotonergic neuropils are present in the anterior and lateral lobes; numerous 5-HT neurons are found in the brain lobes including the central unpaired lobe. The X-cross commissure consists of the α-tub-immunoreactive and 5-HT-IR neurites. Eight ultrastructural types of neurons were found in the brain of the three species investigated. In addition, different types of synapses were present in the neuropils. Glial cells ensheath the brain lobes, the neuropils, the GAs, and the bulbar nerves. Glia cell processes form complex branching patterns of thin cytoplasmic sheets sandwiched between adjacent neural processes and filling the space between neurons. Multilayer myelin-like envelopes and a mesaxon-like structure have been found in Trypanorhyncha nervous system. We compared the brain architecture of Trypanorhyncha with that of an early basal cestode taxon, that is, Diphyllobothriidea, and present a hypothesis about the homology of the anterior brain lobes in order Trypanorhyncha; and the lateral lobes and median commissure are homologous brain structures within Eucestoda.  相似文献   

12.
Summary The structural organization of the olfactory lobes in representatives of euphausiid and mysid crustaceans was investigated and compared, also with these structures described in other crustaceans and in insects. In the investigated euphasiid and mysid species, the olfactory-globular tract and the position of cell clusters associated with the olfactory lobes show a similar arrangement. This arrangement is in agreement with that described in decapod crustaceans. The olfactory lobe neuropil in representatives of both taxa shows glomerular arrangement. These glomeruli are partly enclosed in a glial wrapping, and they represent the only site where synaptic contacts are established within the olfactory lobes. This glomerular arrangement appears similar to that described in the antennal lobe of insects, but differs from the columnar arrangement described in decapod crustaceans. Furthermore, about 15–20 FMRFamide-like immunoreactive globuli cells were labeled and they occupy a similar position in the investigated species. Neurites from these cells terminate only in the olfactory lobe glomeruli, and they are therefore regarded as intrinsic interneurons. The absence of serotonin-like immunoreactivity in the olfactory lobes is a feature only ascribed to the euphausiids and mysids. A specific neuropil area is present in male mysids, and it occupy a position forward of the olfactory lobe. The male-specific neuropil in mysids and the macro-glomerular in insects complex are interpreted as analogous structures.  相似文献   

13.
Pre-existing neuronal pathways in the developing optic lobes of Drosophila   总被引:3,自引:0,他引:3  
We have identified a set of larval neurones in the developing adult optic lobes of Drosophila by selectively labelling cells that have undergone only a few mitoses. A cluster of three cells is located in each of the optic lobes near the insertion site of the optic stalk. Their axons fasciculate with fibres of the larval optic nerve, the Bolwig's nerve, and then form part of the posterior optic tract. These cells are likely to be first order interneurones of the larval visual system. Unlike the Bolwig's nerve, they persist into the adult stage. The possibility of a pioneering function of the larval visual system during formation of the adult optic lobe neuropil is discussed.  相似文献   

14.
Central nervous system of freshwater pulmonate molluscs Lymnaea stagnalis and Planorbarius corneus was stained using retrograde transport of neurobiotin in the optic tract fibers. In both species, perikarya and fibers of the stained neurons are found in all ganglia except the buccal ones. Afferent fibers of the optic nerve form dense sensory neuropil located in relatively small volume of cerebral ganglia. Typical neuronal groups sending their processes into the optic nerves of ipsilateral and contralateral body halves are described. Among them, neurons of visceral and parietal ganglia innervating both eyes concurrently as well as sending projections into peripheral nerves are revealed. These neurons, supposedly, have a function to integrate sensory signals, which may be a basis for regulation of light sensitivity of retina and functioning of peripheral organs. Bilateral links of the molluscan eye with the pedal ganglia cells and statocysts are found, which is, likely, a structural basis of certain known behavioral patterns related to stimulation of visual inputs in the studied gastropod molluscs.  相似文献   

15.
Summary Ultrastructural observations of the giant axon of Myxicola infundibulum reveal that the axoplasm contains neurofilaments, a few neurotubules and mitochondria. Finger-like projections issuing from the glial cells of the sheath encircle the giant axon at various angles. The space between the axolemma and sheath is 125 Å. Branches of the giant axon are also surrounded by a glial sheath as they course through the neuropil. Some branches of the giant axon seem to fuse with certain neurons, creating a syncytial arrangement between the giant axon and these neurons.Many small nerve fibers course longitudinally in the neuropil of the nerve cord. Most of these axons are separated from each other by a space of 200 Å without intervening glial processes. Synapses in the neuropil have both clear 600 Å vesicles and larger dense core vesicles suggesting chemical transmission. Some, but not all, of the synaptic areas show thickened membranes and dense material in the synaptic cleft.This study was supported in part by PHS NS-07740 to R.L.P., J.A.B. is a NDEA Predoctoral Fellow in the Department of Physiology.  相似文献   

16.
Circadian locomotor activity rhythms of the cockroach Leucophaea maderae are driven by two bilaterally paired and mutually coupled pacemakers that reside in the optic lobes of the brain. Transplantation studies have shown that this circadian pacemaker is located in the accessory medulla (AMe), a small neuropil of the medulla of the optic lobe. The AMe is densely innervated by about 12 anterior pigment-dispersing-hormone-immunoreactive (PDH-ir) medulla (PDHMe) neurons. PDH-ir neurons are circadian pacemaker candidates in the fruitfly and cockroach. A subpopulation of these neurons also appears to connect both optic lobes and may constitute at least one of the circadian coupling pathways. To determine whether PDHMe neurons directly connect both accessory medullae, we injected rhodamine-labeled dextran as neuronal tracer into one AMe and performed PDH immunocytochemistry. Double-labeled fibers in the anterior, shell, and internodular neuropil of the AMe contralaterally to the injection site showed that PDH-ir fibers directly connect both accessory medullae. This connection is formed by three anterior PDHMe neurons of each optic lobe, which, thus, fulfill morphological criteria for a direct circadian coupling pathway. Our double-label studies also showed that all except one of the midbrain projection areas of anterior PDHMe neurons were innervated ipsilaterally and contralaterally. Thus, anterior PDHMe neurons seem to play multiple roles in generating circadian rhythms. They also deliver timing information output and perform mutual pacemaker coupling in L. maderae. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grants STE 531/7-1, 2, 3, and Human Science Frontier  相似文献   

17.
Gross structural changes and neuropil formation in the brain during development were described in Idiosepius paradoxus, a sepioid that we chose as a model cephalopod. The brain originates in 4 pairs of ectodermal placodes, which occur separately in the embryonic surface undergoing epiboly. In the final period of epiboly, neuroblasts internalize from the placodes and gather into 4 pairs of ganglionic masses. The ganglionic masses assemble into a ring-like cluster encircling the inner yolk and the foregut anlage, gradually integrated into the 4 domains of a massive brain, a subesophageal mass (SBM), a supraesophageal mass (SPM), and a pair of optic lobes. In the early brain, neuropil forms a framework composed of a longitudinal ladder lying in the SBM, and a transverse arch standing on the lateral sides of the SBM and crossing the SPM. Differentiation of brain lobes proceeds from ventral to dorsal along this framework; first the magnocellular lobes and the posterior pedal lobe appear first in the SBM, the other lobes in the SBM and the basal lobes follow in the proximal region of the SPM, and the accessory lobes develop last in the most dorsal zone of the SPM. In the hatchlings, the brain lobes show almost the same arrangement as in the adults, but the accessory lobes, particularly the vertical lobe, are much smaller than those in the adults. Comparison of the present results with those in the teuthoid and the octopod indicates that developmental sequences of the brain are highly conserved in the coleoid cephalopods.  相似文献   

18.
The distribution of corticotropin-releasing factor (CRF)-like immunoreactivity and its colocalization with neuropeptide Y (NPY)-like substances were investigated in the optic lobe and peduncle complex of the octopus (Octopus vulgaris) using immunohistochemical techniques. In the optic lobe cortex, CRF-immunoreactive (CRF-IR) and NPY-immunonegative varicose fibers were observed in the plexiform layer. In the medulla, CRF-IR somata were seen in the cell islands, and CRF-IR varicose fibers were observed in the neuropil. About half of the CRF-IR structures in the medulla showed NPY-like immunoreactivity. In the peduncle lobe, no CRF-IR somata but abundant CRF-IR varicose fibers were observed, and about half of them showed NPY-like immunoreactivity. In the olfactory lobe, CRF-IR somata and abundant CRF-IR varicose fibers were observed. Almost all the CRF-IR somata located in the posterior olfactory lobule showed NPY-like immunoreactivity, whereas those seen in the median olfactory lobule were immunonegative for NPY. About half of the CRF-IR fibers in the anterior lobule neuropil were immunopositive for NPY, but those in the median and posterior lobule neuropils were immunonegative for NPY. In the optic gland, almost all the CRF-IR varicose fibers were immunoreactive for NPY. Western blot analysis of the optic lobe and peduncle complex indicated that anti-CRF antiserum labeled approximate 16.4- and 14.6-kDa bands and that anti-NPY antiserum labeled an approximate 16.2-kDa band. CRF-IR and NPY-immunoreactive neurons in the optic lobe may participate in the modulation of visual information and those in the optic gland may be involved in the regulation of endocrine function.  相似文献   

19.
This paper describes some features of the chaetognath nervous system from ultrastructural observations and observations on material stained with specific techniques for nervous tissue, and from records of the activity of the locomotor muscles and ventral ganglion. Sensory cells grouped on the ventral surface of the head bear ciliary processes (some with multiple tubules), and are probably in connexion with the central nervous system by their own axons, unlike the sensory cells of the hair fan vibration receptors of head and body. The ventral ganglion is motor to the locomotor muscles of the body, and controls the rhythmic locomotor activity of the animal. Electrical events associated with contraction of these muscles are compound non-overshooting spike-like potentials. The ventral ganglion contains several large nerve fibres constant in position and connexions in different individuals. Some of these arise from cells in the ganglia of the head, and pass to the ventral ganglion, others from cells within the ventral ganglion, and probably supply the ciliary hair fan receptors of the body, whilst the motor axons issuing from the ventral ganglion are smaller in diameter. The ganglion is arranged on a ladder-like plan, and axons of the lateral cell bodies cross the central neuropil transversely before they contribute to the longitudinal tracts or pass out in the radial nerves. Synapses in the neuropil contain 30–40 nm electron lucent vesicles; the transmitter is unknown, but is unlikely to be either acetylcholine or l -glutamate. Occasional larger electron dense vesicles up to 70 nm in diameter are also found within nerve fibres of the neuropil. It is concluded that the arrangement of the peripheral nervous system is unlike that of several groups which have been suggested as related to chaetognaths.  相似文献   

20.
The idiosepiid cuttlefish is a suitable organism for behavioral, genetic, and developmental studies. As morphological bases for these studies, organization of the nervous system was examined in Idiosepius paradoxus Ortmann, 1881, using Cajal's silver technique and immunohistochemical staining with anti-acetylated alpha-tubulin antibody. The nervous architecture is generally identical to that described in Sepia and Loligo, but some features characterize the idiosepiid nervous system. The olfactory system is highly developed in the optic tract region. The dorsolateral lobes show large neuropils, connected with each other by a novel well-fasciculated commissure. Each olfactory lobe is subdivided into two lobules. The neuropils of the anterior and the posterior chromatophore lobes are very poorly developed. Neuronal gigantism is not extensive in the brain; enlarged neuronal cells are visible only in the perikaryal layer of the posterior subesophageal mass. The giant nerve fiber system is of the Sepia type; the axons are not markedly thick and the first-order giant fibers do not fuse with each other at the chiasma. Three-dimensional images by whole-mount immunostaining clarified the innervation pattern in the peripheral nervous system in detail. Two commissural fibers link the left and right posterior funnel nerves ventrally and dorsally. The stellate commissure, which is absent in Sepia and Sepiola, connects the stellate ganglia with each other. A branch of the visceral nerve innervating the median pallial adductor muscle is characteristically thick. Tubulinergic reactivity of the cilia and axons reveals the presence of many ciliated cells giving off an axon toward brain nerves in the surface of the funnel, head integument, arm tips, and epidermal lines. Some of these features seem to reflect the inactive nekto-benthic life of the idiosepiid cuttlefish in the eelgrass bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号