首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study has been made of the interrelations between rhythmical exopodite beating in different larval stages and swimmeret beating in poast-larval stages of the lobster Homarus gammarus. Data on exopodite beat cycle durations have been used for statistical comparisons of exopodite performance within one larva, and also between different stages of larval development. Inter-exopodite comparisons reveal clear bilateral differences (table 1), although there is no consistently favoured relationship (tables 2 and 3). There are significant differences in cycle duration between the first three developmental stages, with a slight increase at the first moult, and a marked decrease at the second (table 4). However, within each stage the repeat frequency exhibits little change (table 5). Therefore it appears that changes in swimming behaviour occur discontinuously in development, and are associated with the larval moults. It is suggested that changes in beat frequency, and especially the faster beating in stage III, may represent responses to changed loading conditions (table 7). Measurements of swimmeret beating in post-larval lobsters have been analysed in terms of cycle durations, and inter- and intra-segmental phase relations. Swimmeret beating patterns are very regular (figure 1), but not restricted to a narrow range of frequencies (table 6a). Intersegmental phase lag remains constant around 0.2 (figure 3) independent of beat frequency (figure 4). Similarly the powerstroke/returnstroke ratio of approximately 0.5 (figure 5) shows no significant correlation with cycle duration (figure 6). Differences emerge in the performance of larval exopodites and post-larval swimmerets (table 6b), although the possibility cannot be excluded that the larval exopodite oscillator in some way influences the developing action of the post-larval swimmeret system.  相似文献   

2.
Amputation of a leg alters the amplitude of the adjacent ipsilateral legs during walking: Amputation of a middle leg encreases the amplitude of the foreleg especially by changing the rear extreme position. Amputation of a foreleg reduces the amplitude of the middle leg especially by changing the front extreme position. There is no significant influence observable on contralateral legs.  相似文献   

3.
The protozoan Blepharisma japonicum showed negative phototaxis caused by transient reversal of the direction of ciliary beat and changes of swimming velocity induced with varying intensities of light. The ciliary reversal occurred at 1–2 sec after a sudden increase in light intensity. When light intensity was decreased, no response was observed. Moreover, the ciliates swam fast in light areas but slowly in dark areas; the mean velocity of swimming was 80 μ m/sec at 5 × 102 lux but reached about 400 μMm/sec at 5 × 103 lux. In addition, the cell body elongated in response to light application; the mean length of the body was 308 μm at 5 × 102 lux, which increased to 397 μ m at 104 lux. Such body elongation seems to contribute to rapid swimming. Negative phototaxis may be an important behavior in B. japonicum because the organisms are killed by exposure to strong light.  相似文献   

4.
不同流速下杂交鲟幼鱼游泳状态与活动代谢研究   总被引:2,自引:1,他引:1  
为研究水流速度对杂交鲟幼鱼行为和代谢的影响,探讨游泳状态与活动代谢及相关游泳运动参数之间的关系,在26℃水温下,使用特制的鱼类游泳行为和活动代谢同步测定装置,测定了杂交鲟幼鱼在0.1、0.3、0.5 m/s三种流速和静水条件下的游泳状态、趋流率、摆尾频率和耗氧率。结果表明:随着流速的增大,杂交鲟幼鱼逆流前进和逆流静止游泳状态所占时间比例显著减少,而逆流后退所占时间比例显著增加,顺流而下时间比例有所上升。在0.0—0.3 m/s的流速范围内,杂交鲟幼鱼各个时段的平均趋流率、摆尾频率和耗氧率均随着流速的增加而增大,在0.3 m/s流速下分别达到100%﹑(2.53±0.34)Hz和(490.99±164.59)mg O2/(kg.h)。当流速增加至0.5 m/s时,在趋流率仍保持100%的情况下,其耗氧率相比0.3 m/s增加了21.86%,而摆尾频率却减小了6.70%。实验过程杂交鲟幼鱼趋流率与摆尾频率呈显著线性正相关,而摆尾频率与耗氧率在大部分时段却无相关性。随着时间的延长,各流速组杂交鲟幼鱼趋流率、摆尾频率和耗氧率呈现不同的变化趋势,其趋流率均相对稳定;但摆尾频率均随时间延长呈下降趋势,而耗氧率则在实验前9h随时间延长逐渐增加,随后趋于稳定。研究结果提示:杂交鲟幼鱼游泳状态的变化与流速有关,而反映运动强度大小的摆尾频率与活动代谢率的关系受到游泳状态的显著影响,同时也与运动代谢特征的时间变化有关。    相似文献   

5.
Copepods normally swim by rhythmically beating the cephalic limbs, so records of antennal movements represent their activity. The limb beat rate of Temora longicornis Müller was determined in relation to several factors. There was an inverse relationship between swimming rate and body size, and activity increased with environmental temperature up to 20–25°C. Copepods readily acclimated, as those kept at 15°C were less active than those kept at 5°C. The summer population was also less active in the low temperature range, but swimming reached a higher rate at higher temperatures than were tolerated by the winter population. No difference in rate of limb beat was found between similar sized males and females over a wide range of temperatures.  相似文献   

6.
  • 1.1. Using a high-speed video system operating at 400 frames/sec, the effects of temperature on tail beat frequency, swimming speed and stride length were examined in newly hatched larvae of herring (Clupea harengus L.) and in tadpole larvae of the ascidian Dendrodoa grossularia van Beneden.
  • 2.2. The effect of temperature was linear; the tail beat frequency of 8 mm-long herring larvae increased from 19 Hz at 5.6°C to 37 Hz at 14.9°C (Q10 = 2.04); that of 2 mm-long Dendrodoa larvae increased from 10 Hz at 9.6°C to 23 Hz at 18.1°C (Q10 = 2.52).
  • 3.3. Burst swimming speeds of herring larvae increased from 80 mm/sec at 5°C to 150 mm/sec at 15°C, stride length remaining constant at about 0.5 of the body length for each tail beat.
  • 4.4. More continuous swimming of Dendrodoa increased from 4.0 mm/sec at 10°C to 11.5 mm/sec at 18°C, the stride length increasing from about 0.15 to 0.25.
  相似文献   

7.
Whirligig beetles (Coleoptera, Gyrinidae) can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle''s legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots.  相似文献   

8.
An air puff stimulus evoked the swimming of an intact cricket, Gryllus bimaculatus, placed on a water surface. When only the forelegs were intact, swimming was initiated frequently, but flying was never initiated. On the other hand, flying was initiated when only the middle legs or hindlegs were intact. Therefore, the sensory inputs from the forelegs are important in the initiation of swimming and for the inhibition of flying when on the water surface. After bilateral ablation of the middle legs and hindlegs, the bilateral segments of the remaining forelegs were sequentially ablated from the distal area to the proximal area of the legs. After bilateral ablation of all tarsomeres, the relative occurrence of swimming decreased and that of flying increased. After the following ablation of the bilateral tibiae, most insects responded to an air puff stimulus by flying. Experiments performed after coating the leg surface with enamel resulted in almost the same behavioral change as that observed in the ablation experiments. These results suggest that the sensory receptors responsible for the initiation of swimming and the inhibition of flying are mainly located on the surface of the tibia and the tarsus of the forelegs. The behavioral change between swimming and walking was also studied using methylcellulose solutions of various viscosities. On the methylcellulose solution, the relative occurrence of walking in the crickets increased with an increase in the viscosity of the solution.  相似文献   

9.
Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when feeding, which results in a higher feeding efficiency than that of a nauplius cruising through the water.  相似文献   

10.
Decapoda Crustacea molt in order to grow; some species, such as the Dungeness crab Cancer magister, achieve a very large size. Does sendory neuron hyperplasia in internal proprioceptors accompany this growth? To determine this, neurons in propodite-dactylopodite (PD) chordotonal organs were counted in first walking legs of juvenile (5th through 9th instar) and adult (10th through 13th instar) C. magister. We found that the PD organs of J5 crabs have about 56 neurons; the number increases to about 61 neurons in J6 crabs. Significant hyperplasia now occurs because an average of 79 neurons are found in the PD organs of J7 crabs. Little to no hyperplasia accompanies the several succeeding juvenile and adult molts (ca. 82–86 neurons are present). Because autotomized limbs are regenerated upon molting, we also examined how the number of PD organ neurons in regenerated legs compare with those of pristine legs. Newly regenerated legs (termed 1st stage regenerates) have fewer sensory neurons than do their contralateral pristine partners (65 vs 81); larger regenerated legs which have attained nearly normal size as a result of additional molts (2nd stage regenerates) still have fewer neurons than their pristine partners (69 vs 81). Additionally, in contrast to those of pristine walking legs, the elastic strand of PD organs from 1st stage regenerates is a misshapen sheet containing a cluster of small neurons with no obvious functional organization. Nonetheless, neurophysiological recordings indicate that all the receptor types typical for pristine legs (movement and position cells) are represented. The PD organs of 2nd stage regenerates differentiate to the shape and neuronal organization of pristine legs. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1–25 Hz) with tri‐axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail‐beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim‐tunnel respirometer and free‐swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free‐swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail‐beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail‐beat frequency and swimming style, this study provides a reference point with a medium body‐sized sub‐carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration.  相似文献   

12.
Swimmeret beating was monitored in freely moving specimens of the crayfish Procambarus clarkii as they exhibited defense turn responses to tactile stimuli. Analysis of videotape records revealed alterations in swimmeret beating during turning responses compared to straight, forward walking. During turns, swimmerets beat with shorter periods and smaller amplitude power strokes than during straight walking. Coordination between swimmerets also changed. Swimmerets on the side toward which the animal turned tended to lag behind their contralateral partners, rather than beat in synchrony as in straight walking, and ipsilateral coordination was loosened relative to straight walking. Asynchronous swimmeret beating accompanied asymmetric motions of the uropods in a manner similar to that observed during statocyst-dependent equilibrium reactions in P. clarkii, but removal of the statoliths did not eliminate turn-associated responses of the swimmerets. The coordinated action of the swimmerets and uropods may contribute to the torque that rotates the animal in the yaw plane. Implications of the observed changes in swimmeret coordination for understanding the underlying neuronal control system are discussed.  相似文献   

13.
Kim S  Park S 《Journal of biomechanics》2011,44(7):1253-1258
Bipedal walking models with compliant legs have been employed to represent the ground reaction forces (GRFs) observed in human subjects. Quantification of the leg stiffness at varying gait speeds, therefore, would improve our understanding of the contributions of spring-like leg behavior to gait dynamics. In this study, we tuned a model of bipedal walking with damped compliant legs to match human GRFs at different gait speeds. Eight subjects walked at four different gait speeds, ranging from their self-selected speed to their maximum speed, in a random order. To examine the correlation between leg stiffness and the oscillatory behavior of the center of mass (CoM) during the single support phase, the damped natural frequency of the single compliant leg was compared with the duration of the single support phase. We observed that leg stiffness increased with speed and that the damping ratio was low and increased slightly with speed. The duration of the single support phase correlated well with the oscillation period of the damped complaint walking model, suggesting that CoM oscillations during single support may take advantage of resonance characteristics of the spring-like leg. The theoretical leg stiffness that maximizes the elastic energy stored in the compliant leg at the end of the single support phase is approximated by the empirical leg stiffness used to match model GRFs to human GRFs. This result implies that the CoM momentum change during the double support phase requires maximum forward propulsion and that an increase in leg stiffness with speed would beneficially increase the propulsion energy. Our results suggest that humans emulate, and may benefit from, spring-like leg mechanics.  相似文献   

14.
Sperm are propelled by an actively beating tail, and display a wide variety of swimming patterns. When confined between two parallel walls, sperm swim either in circles or on curvilinear trajectories close to the walls. We employ mesoscale hydrodynamics simulations in combination with a mechanical sperm model to study the swimming behavior near walls. The simulations show that sperm become captured at the wall due to the hydrodynamic flow fields which are generated by the flagellar beat. The circular trajectories are determined by the chiral asymmetry of the sperm shape. For strong (weak) chirality, sperm swim in tight (wide) circles, with the beating plane of the flagellum oriented perpendicular (parallel) to the wall. For comparison, we also perform simulations based on a local anisotropic friction of the flagellum. In this resistive force approximation, surface adhesion and circular swimming patterns are obtained as well. However, the adhesion mechanism is now due to steric repulsion, and the orientation of the beating plane is different. Our model provides a theoretical framework that explains several distinct swimming behaviors of sperm near and far from a wall. Moreover, the model suggests a mechanism by which sperm navigate in a chemical gradient via a change of their shape.  相似文献   

15.
1. 1. Single myocardial cells from fetal mouse heart beat spontaneously in monolayer culture. In standard medium they maintained a constant beating rate for at least 5 h. After the beating rate of individual cells had been accelerated for a short time by electrical stimulation, the original beating rate could be immediately restored by interrupting the stimulation. Quiescent myocardial cells from neonatal mouse atrium could be induced to beat by electrical stimulation and most of them ceased to beat again immediately by interrupting the stimulation.
2. 2. After the spontaneous beating of individual myocardial cells had been stopped or slowed down for a short time by incubation in medium of low temperature or high potassium or low calcium concentration, the original beating rate could be restored by replacing the cells in the original, normal medium.
3. 3. After the spontaneous beating of individual myocardial cells had been stopped by adding a metabolic inhibitor, such as 2,4-dinitrophenol or 2-deoxyglucose, the original beating rate could be restored by replacing the cells in the original, normal medium.
4. 4. Both single myocardial cells and cell clusters showed arrhythmia, including flutter and fibrillation, in medium of low potassium or high calcium concentration. After a short period of arrhythmia, the original beating rate could be restored by replacing the cells in the original, normal medium. The arrhythmia of cell clusters produced in either low potassium or high calcium medium was also corrected immediately by addition of quinidine sulfate.
  相似文献   

16.
Two rows (anterior and posterior) of long fine setae inserted on the 3rd, 4th and 5th segments of the last two pairs of legs of L. americana form functional swimming blades. Each swimming setal is mounted in a mobile basal socket, and the structure of the setal base and socket configuration ensure that the blades will be passively erected during the leg's power stroke to provide increased thrust and collapsed during the recovery stroke to reduce water resistance. The erect swimming blades increase the effective area for thrust by approximately 500%, making it possible for the mite to lift itself off the bottom. The IVth legs contribute the greater proportion of the thrust developed during paddling, and the 4th segment (genu) bears the largest swimming blades on both legs.  相似文献   

17.
When insects turn from walking straight, their legs have to follow different motor patterns. In order to examine such pattern change precisely, we stimulated single antenna of an insect, thereby initiating its turning behavior, tethered over a lightly oiled glass plate. The resulting behavior included asymmetrical movements of prothoracic and mesothoracic legs. The mesothoracic leg on the inside of the turn (in the apparent direction of turning) extended the coxa-trochanter and femur-tibia joints during swing rather than during stance as in walking, while the outside mesothoracic leg kept a slow walking pattern. Electromyograms in mesothoracic legs revealed consistent changes in the motor neuron activity controlling extension of the coxa-trochanter and femur-tibia joints. In tethered walking, depressor trochanter activity consistently preceded slow extensor tibia activity. This pattern was reversed in the inside mesothoracic leg during turning. Also for turning, extensor and depressor motor neurons of the inside legs were activated in swing phase instead of stance. Turning was also examined in free ranging animals. Although more variable, some trials resembled the pattern generated by tethered animals. The distinct inter-joint and inter-leg coordination between tethered turning and walking, therefore, provides a good model to further study the neural control of changing locomotion patterns.  相似文献   

18.
Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved ‘9+2’ axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26–57%) and beat frequencies (by 8–16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.  相似文献   

19.
Rhythmic leg movements and tailflipping are mutually exclusive behaviours in most decapod crustaceans, but sand crabs (Anomura: Hippoidea) combine leg movements with simultaneous tailflipping or uropod beating for both digging and swimming. We examined the coordination between the legs and tail (abdomen and tailfan) of Blepharipoda occidentalis, Lepidopa californica (Albuneidae), and Emerita analoga (Hippidae). When either albuneid swims, the tail cycles at a higher frequency than the legs, and the two rhythms are not coupled. When albuneids begin digging, the tail's frequency drops to that of the legs, and its rhythm becomes phase coupled to the legs. In E. analoga the legs seldom move during swimming by uropod beating. During digging the frequency of the uropods and fourth legs starts at about double that of the second and third legs, but drops to that of the second and third legs as digging progresses. The fourth legs in E. analoga are coupled with the uropods; their outward movement (= power stroke) is concurrent with the uropod return stroke. The familial differences in leg coordination and in the coordination of the legs and tail account for the smooth descent of E. analoga beneath sand compared to the stepwise descent of the albuneids. Accepted: 23 August 1996  相似文献   

20.
Chlamydomonadales are elective subjects for the investigation of the problems related to locomotion and transport in biological fluid dynamics, whose resolution could enhance searching efficiency and assist in the avoidance of dangerous environments. In this paper, we elucidate the swimming behavior of Tetraflagellochloris mauritanica, a unicellular–multicellular alga belonging to the order Chlamydomonadales. This quadriflagellate alga has a complex swimming motion consisting of alternating swimming phases connected by in‐place random reorientations and resting phases. It is capable of both forward and backward swimming, both being normal modes of swimming. The complex swimming behavior resembles the run‐and‐tumble motion of peritrichous bacteria, with in‐place reorientation taking the place of tumbles. In the forward swimming, T. mauritanica shows a very efficient flagellar beat, with undulatory retrograde waves that run along the flagella to their tip. In the backward swimming, the flagella show a nonstereotypical synchronization mode, with a pattern that does not fit any of the modes present in the other Chlamydomonadales so far investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号