首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.  相似文献   

2.
Postreplication repair (PRR) pathways play important roles in restarting stalled replication forks and regulating mutagenesis. In yeast, Rad5-mediated damage avoidance and Rad18-mediated translesion synthesis (TLS) are two forms of PRR. Two Rad5-related proteins, SHPRH and HLTF, have been identified in mammalian cells, but their specific roles in PRR are unclear. Here, we show that HLTF and SHPRH suppress mutagenesis in a damage-specific manner, preventing mutations induced by UV and MMS, respectively. Following UV, HLTF enhances PCNA monoubiquitination and recruitment of TLS polymerase η, while also inhibiting SHPRH function. In contrast, MMS promotes the degradation of HLTF and the interactions of SHPRH with Rad18 and polymerase κ. Our data suggest not only that cells differentially utilize HLTF and SHPRH for different forms of DNA damage, but also, surprisingly, that HLTF and SHPRH may coordinate the two main branches of PRR to choose the proper bypass mechanism for minimizing mutagenesis.  相似文献   

3.
Many DNA lesions cause pausing of replication forks at lesion sites; thus, generating gaps in the daughter strands that are filled‐in by post‐replication repair (PRR) pathways. In Saccharomyces cerevisiae, PRR involves translesion synthesis (TLS) mediated by Polη or Polζ, or Rad5‐dependent gap filling through a poorly characterized error‐free mechanism. We have developed an assay to monitor error‐free and mutagenic TLS across single DNA lesions in Schizosaccharomyces pombe. For both main UV photolesions, we have delineated a major error‐free pathway mediated by a distinct combination of TLS polymerases. Surprisingly, these TLS pathways require enzymes needed for poly‐ubiquitination of proliferating cell nuclear antigen (PCNA) as well as those required for mono‐ubiquitination. For pathways that require several TLS polymerases the poly‐ubiquitin chains of PCNA may facilitate their recruitment through specific interactions with their multiple ubiquitin‐binding motifs. These error‐free TLS pathways may at least partially account for the previously described poly‐ubiquitination‐dependent error‐free branch of PRR. This work highlights major differences in the control of lesion tolerance pathways between S. pombe and S. cerevisiae despite the homologous sets of PRR genes these organisms share.  相似文献   

4.
5.
During replication, bypass of DNA lesions is orchestrated by the Rad6 pathway. Monoubiquitination of proliferating cell nuclear antigen (PCNA) by Rad6/Rad18 leads to recruitment of translesion polymerases for direct and potentially mutagenic damage bypass. An error-free bypass pathway may be initiated via K63-linked PCNA polyubiquitination by Ubc13/Mms2 and the E3 ligase Rad5 in yeast, or HLTF/SHPRH in vertebrates. For the latter two enzymes, redundancy with a third E3 ligase and alternative functions have been reported. We have previously shown that the Rad6 pathway is involved in somatic hypermutation of immunoglobulin genes in B lymphocytes. Here, we have used knockout strategies targeting expression of the entire SHPRH protein or functionally significant domains in chicken DT40 cells that do not harbor a HLTF ortholog. We show that SHPRH is apparently redundant with another E3 ligase during DNA damage-induced PCNA modification. SHPRH plays no substantial role in cellular resistance to drugs initiating excision repair and the Rad6 pathway, but is important in survival of topoisomerase II inhibitor treatment. Removal of only the C-terminal RING domain does not interfere with this SHPRH function. SHPRH inactivation does not substantially impact on the overall efficacy of Ig diversification. Redundancy of E3 ligases in the Rad6 pathway may be linked to its different functions in genome maintenance and genetic plasticity.  相似文献   

6.
In yeast, Rad6-Rad18-dependent lesion bypass involves translesion synthesis (TLS) by DNA polymerases eta or zeta or Rad5-dependent postreplication repair (PRR) in which error-free replication through the DNA lesion occurs by template switching. Rad5 functions in PRR via its two distinct activities-a ubiquitin ligase that promotes Mms2-Ubc13-mediated K63-linked polyubiquitination of PCNA at its lysine 164 residue and a DNA helicase that is specialized for replication fork regression. Both these activities are important for Rad5's ability to function in PRR. Here we provide evidence for the requirement of Rad5 in TLS mediated by Polzeta. Using duplex plasmids carrying different site-specific DNA lesions-an abasic site, a cis-syn TT dimer, a (6-4) TT photoproduct, or a G-AAF adduct-we show that Rad5 is needed for Polzeta-dependent TLS. Rad5 action in this role is likely to be structural, since neither the inactivation of its ubiquitin ligase activity nor the inactivation of its helicase activity impairs its role in TLS.  相似文献   

7.
Many types of DNA lesions in template strands block DNA replication and lead to a stalling of replication forks. This block can be overcome (bypassed) by special DNA polymerases (for example, DNA polymerase eta, Pol eta) that perform translesion synthesis on damaged template DNA. The phenomenon of completing DNA replication, while DNA lesions remain in the template strands, has been named post-replication repair (PRR). In yeast Saccharomyces cerevisiae, PRR includes mutagenic and error-free pathways under the regulation of the RAD6/RAD18 complex, which induces ubiquitylation of PCNA. In mammalian cells, Pol eta accumulates in replication foci but the mechanism of this accumulation is not known. Pol eta possesses a conserved PCNA binding motif at the C terminal and phosphorylation of this motif might be essential for its interaction with PCNA. We have shown previously that staurosporine, an inhibitor of protein kinases, inhibits PRR in human cells. In this study we examined whether the accumulation of Pol eta in replication foci after DNA damage is dependent on phosphorylation of the PCNA binding motif. We also studied DNA damage-induced phosphorylation of GFP-tagged human Rad18 (hRad18) and its accumulation in replication foci. Our data indicate that (1) Pol eta is not phosphorylated in response to UV irradiation or MMS treatment, but its diffusional mobility is slightly decreased, and (2) hRad18 accumulates in MMS-treated cells, and considerable amount of the protein co-localizes with detergent insoluble PCNA in replication foci; these responses are sensitive to staurosporine. Our data suggest that hRad18 phosphorylation is the staurosporine-sensitive PRR step.  相似文献   

8.
The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase plays a role in homologous recombination by facilitating the assembly of the Ubc13 ubiquitin-conjugating enzyme with the RNF8 ubiquitin ligase. To explore the role of HERC2 and RNF8 in PRR, we examined immunoglobulin diversification in chicken DT40 cells deficient in HERC2 and RNF8. Unexpectedly, the HERC2−/− and RNF8−/− cells and HERC2−/−/RNF8−/− double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2−/− and RNF8−/− mutants exhibit defective maintenance of replication fork progression immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks.  相似文献   

9.
DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and is subdivided into two parallel pathways: error-prone translesion DNA synthesis and error-free PRR. While both pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes noncanonical K63-linked polyubiquitinated PCNA to signal lesion bypass through template switch, a process thought to be dependent on Mms2-Ubc13 and a RING finger motif of the Rad5 ubiquitin ligase. Previous in vitro studies demonstrated the ability of Rad5 to promote replication fork regression, a function dependent on its helicase activity. To investigate the genetic and mechanistic relationship between fork regression in vitro and template switch in vivo, we created and characterized site-specific mutations defective in the Rad5 RING or helicase activity. Our results indicate that both the Rad5 ubiquitin ligase and the helicase activities are exclusively involved in the same error-free PRR pathway. Surprisingly, the Rad5 helicase mutation abolishes its physical interaction with Ubc13 and the K63-linked PCNA polyubiquitin chain assembly. Indeed, physical fusions of Rad5 with Ubc13 bypass the requirement for either the helicase or the RING finger domain. Since the helicase domain overlaps with the SWI/SNF chromatin-remodelling domain, our findings suggest a structural role of this domain and that the Rad5 helicase activity is dispensable for error-free lesion bypass.  相似文献   

10.
It has long been appreciated that Cdc7 is an essential protein kinase that phosphorylates Mcm2-7 helicase subunits to promote initiation of DNA replication. In addition to its well-elucidated role in DNA replication, recent studies suggest that DDK is active in genotoxin-treated cells and may mediate aspects of the DNA damage response. However, specific role(s) of DDK and its effector targets in DNA damage signaling have not been defined. A recent study from our laboratories has identified the E3 ubiquitin ligase Rad18 as novel substrate of DDK in vitro and in human cells. Rad18 plays a central role in a post-replication DNA repair pathway termed ‘Trans-Lesion Synthesis’ (TLS) by promoting recruitment of DNA Polymerase eta (Polη) and other TLS polymerases to stalled replication forks. DDK-mediated Rad18 phosphorylation promotes Rad18-Polη complex formation and facilitates Rad18-dependent recruitment of Polη to stalled replication forks. The mechanisms that regulate Rad18-dependent TLS are incompletely understood. Our study provides the first demonstration of Rad18 regulation by direct phosphorylation and defines a novel mechanism for Rad18-dependent recruitment of TLS polymerases to stalled forks. This study also demonstrates a molecular basis for integration of TLS with S-phase progression via the essential Cdc7 kinase. These findings reveal unexpected mechanistic insights to the regulation of the TLS pathway and Polη recruitment.  相似文献   

11.
12.
DNA damage tolerance (DDT) mechanisms facilitate replication resumption and completion when DNA replication is blocked by bulky DNA lesions. In budding yeast, template switching (TS) via the Rad18/Rad5 pathway is a favored DDT pathway that involves usage of the sister chromatid as a template to bypass DNA lesions in an error‐free recombination‐like process. Here, we establish that the Snf2 family translocase Irc5 is a novel factor that promotes TS and averts single‐stranded DNA persistence during replication. We demonstrate that, during replication stress, Irc5 enables replication progression by assisting enrichment of cohesin complexes, recruited in an Scc2/Scc4‐dependent fashion, near blocked replication forks. This allows efficient formation of sister chromatid junctions that are crucial for error‐free DNA lesion bypass. Our results support the notion of a key role of cohesin in the completion of DNA synthesis under replication stress and reveal that the Rad18/Rad5‐mediated DDT pathway is linked to cohesin enrichment at sites of perturbed replication via the Snf2 family translocase Irc5.  相似文献   

13.
Translesion DNA synthesis (TLS) can use specialized DNA polymerases to insert and/or extend nucleotides across lesions, thereby limiting stalled replication fork collapse and the potential for cell death. Recent studies have shown that monoubiquitinated proliferating cell nuclear antigen (PCNA) plays an important role in recruitment of Y-family TLS polymerases to stalled replication forks after DNA damage treatment. To explore the possible roles of other factors that regulate the ultraviolet (UV)-induced assembly of specialized DNA polymerases at arrested replication forks, we performed immunoprecipitation experiments combined with mass spectrometry and established that DNA polymerase kappa (Polκ) can partner with MSH2, an important mismatch repair protein associated with hereditary non-polyposis colorectal cancer. We found that depletion of MSH2 impairs PCNA monoubiquitination and the formation of foci containing Polκ and other TLS polymerases after UV irradiation of cells. Interestingly, expression of MSH2 in Rad18-deficient cells increased UV-induced Polκ and REV1 focus formation without detectable changes in PCNA monoubiquitination, indicating that MSH2 can regulate post-UV focus formation by specialized DNA polymerases in both PCNA monoubiquitination-dependent and -independent fashions. Moreover, we observed that MSH2 can facilitate TLS across cyclobutane pyrimidine dimers photoproducts in living cells, presenting a novel role of MSH2 in post-UV cellular responses.  相似文献   

14.
Fanconi anemia (FA) is a cancer susceptibility syndrome characterized by sensitivity to DNA-damaging agents. The FA proteins (FANCs) are implicated in DNA repair, although the precise mechanisms by which FANCs process DNA lesions are not fully understood. An epistatic relationship between the FA pathway and translesion synthesis (TLS, a post-replication DNA repair mechanism) has been suggested, but the basis for cross-talk between the FA and TLS pathways is poorly understood. We show here that ectopic overexpression of the E3 ubiquitin ligase Rad18 (a central regulator of TLS) induces DNA damage-independent mono-ubiquitination of proliferating cell nuclear antigen (PCNA) (a known Rad18 substrate) and FANCD2. Conversely, DNA damage-induced mono-ubiquitination of both PCNA and FANCD2 is attenuated in Rad18-deficient cells, demonstrating that Rad18 contributes to activation of the FA pathway. WT Rad18 but not an E3 ubiquitin ligase-deficient Rad18 C28F mutant fully complements both PCNA ubiquitination and FANCD2 activation in Rad18-depleted cells. Rad18-induced mono-ubiquitination of FANCD2 is not observed in FA core complex-deficient cells, demonstrating that Rad18 E3 ligase activity alone is insufficient for FANCD2 ubiquitylation. Instead, Rad18 promotes FA core complex-dependent FANCD2 ubiquitination in a manner that is secondary to PCNA mono-ubiquitination. Taken together, these results demonstrate a novel Rad18-dependent mechanism that couples activation of the FA pathway with TLS.  相似文献   

15.
Translesion synthesis (TLS) is a potentially mutagenic method of bypassing DNA damage encountered during replication that requires the recruitment of specialized DNA polymerases to stalled replication forks or postreplicative gaps. Current models suggest that TLS is activated by monoubiquitination of the DNA sliding clamp PCNA. However, in higher organisms, fully effective TLS also requires a noncatalytic function of the Y family polymerase REV1. Using the genetically tractable chicken cell line DT40, we show that TLS at stalled replication forks requires that both the translesion polymerase-interaction domain and ubiquitin-binding domain in the C terminus of REV1 are intact. Surprisingly, however, PCNA ubiquitination is not required to maintain normal fork progression on damaged DNA. Conversely, PCNA ubiquitination is essential for filling postreplicative gaps. Thus, PCNA ubiquitination and REV1 play distinct roles in the coordination of DNA damage bypass that are temporally separated relative to replication fork arrest.  相似文献   

16.
In Saccharomyces cerevisiae, replication through DNA lesions is promoted by Rad6-Rad18-dependent processes that include translesion synthesis by DNA polymerases eta and zeta and a Rad5-Mms2-Ubc13-controlled postreplicational repair (PRR) pathway which repairs the discontinuities in the newly synthesized DNA that form opposite from DNA lesions on the template strand. Here, we examine the contributions of the RAD51, RAD52, and RAD54 genes and of the RAD50 and XRS2 genes to the PRR of UV-damaged DNA. We find that deletions of the RAD51, RAD52, and RAD54 genes impair the efficiency of PRR and that almost all of the PRR is inhibited in the absence of both Rad5 and Rad52. We suggest a role for the Rad5 pathway when the lesion is located on the leading strand template and for the Rad52 pathway when the lesion is located on the lagging strand template. We surmise that both of these pathways operate in a nonrecombinational manner, Rad5 by mediating replication fork regression and template switching via its DNA helicase activity and Rad52 via a synthesis-dependent strand annealing mode. In addition, our results suggest a role for the Rad50 and Xrs2 proteins and thereby for the MRX complex in promoting PRR via both the Rad5 and Rad52 pathways.  相似文献   

17.
18.
During S-phase, the genome is extremely vulnerable and the progression of replication forks is often threatened by exogenous and endogenous challenges. When replication fork progression is halted, the intra S-phase checkpoint is activated to promote structural stability of stalled forks, preventing the dissociation of replisome components. This ensures the rapid resumption of replication following DNA repair. Failure in protecting and/or restarting the stalled forks contributes to alterations of the genome. Several human genetic diseases coupled to an increased cancer predisposition are caused by mutations in genes involved in safeguarding genome integrity during DNA replication. Both the ATR (ataxia telangiectasia and Rad3-related protein) kinase and the Replication pausing complex (RPC) components Tipin, Tim1 and Claspin play key roles in activating the intra S-phase checkpoint and in stabilizing the stalled replication forks. Here, we discuss the specific contribution of these factors in preserving fork structure and ensuring accurate completion of DNA replication.  相似文献   

19.
Translesion synthesis (TLS), the process by which DNA polymerases replicate through DNA lesions, is the source of most DNA damage-induced mutations. Sometimes TLS is carried out by replicative polymerases that have evolved to synthesize DNA on non-damaged templates. Most of the time, however, TLS is carried out by specialized translesion polymerases that have evolved to synthesize DNA on damaged templates. TLS requires the mono-ubiquitylation of the replication accessory factor proliferating cell nuclear antigen (PCNA). PCNA and ubiquitin-modified PCNA (UbPCNA) stimulate TLS by replicative and translesion polymerases. Two mutant forms of PCNA, one with an E113G substitution and one with a G178S substitution, support normal cell growth but inhibit TLS thereby reducing mutagenesis in yeast. A re-examination of the structures of both mutant PCNA proteins revealed substantial disruptions of the subunit interface that forms the PCNA trimer. Both mutant proteins have reduced trimer stability with the G178S substitution causing a more severe defect. The mutant forms of PCNA and UbPCNA do not stimulate TLS of an abasic site by either replicative Pol δ or translesion Pol η. Normal replication by Pol η was also impacted, but normal replication by Pol δ was much less affected. These findings support a model in which reduced trimer stability causes these mutant PCNA proteins to occasionally undergo conformational changes that compromise their ability to stimulate TLS by both replicative and translesion polymerases.  相似文献   

20.
Yeast DNA postreplication repair (PRR) bypasses replication-blocking lesions to prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA, namely translesion synthesis (TLS) and error-free PRR, which are regulated via sequential ubiquitination of proliferating cell nuclear antigen (PCNA). We previously demonstrated that error-free PRR utilizes homologous recombination to facilitate template switching. To our surprise, genes encoding the Mre11-Rad50-Xrs2 (MRX) complex, which are also required for homologous recombination, are epistatic to TLS mutations. Further genetic analyses indicated that two other nucleases involved in double-strand end resection, Sae2 and Exo1, are also variably required for efficient lesion bypass. The involvement of the above genes in TLS and/or error-free PRR could be distinguished by the mutagenesis assay and their differential effects on PCNA ubiquitination. Consistent with the observation that the MRX complex is required for both branches of PRR, the MRX complex was found to physically interact with Rad18 in vivo. In light of the distinct and overlapping activities of the above nucleases in the resection of double-strand breaks, we propose that the interplay between distinct single-strand nucleases dictate the preference between TLS and error-free PRR for lesion bypass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号