首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In Bathynomus doederleini all of the cardioarterial valves located at the origin of the lateral arteries are dilated by impulses of lateral cardiac nerves. Tactile stimuli applied to sensillar setae depress impulse activities of the 1st and 5th lateral cardiac nerves. The 1st lateral cardiac nerve controls the valve of the lateral artery which runs to the walking-legs and viscera. The 5th lateral cardiac nerve controls the valve of the lateral artery which runs to the swimmeret muscles. The response indicates that tactile receptor reflexes bring about decreased haemolymph flow to the organs. Augmented swimmeret movements were always accompanied by an increased firing rate in the 5th lateral cardiac nerve. Artificial full protraction of swimmerets simultaneously induced excitation of the 5th lateral cardiac nerve and inhibition of the 1st lateral cardiac nerve. The excitation corresponds to an increase in haemolymph flow to the swimmerets, and the inhibition a decrease in haemolymph flow to walking-legs and viscera. Three kinds of mechanoproprioceptors which were activated by swimmeret movements were found. Two of the mechanoproprioceptors are located at the base of the basipodite. The other mechanoproprioceptor supplies processes to a nerve to the retractor muscles. Activation of three kinds of mechanoproprioceptors, induced by artificial swimmeret protraction, triggered lateral cardiac nerve reflex responses.Abbreviations LA lateral artery - LCN lateral cardiac nerve - RMN nerve to retractor muscles - StR stretch receptor  相似文献   

2.
1.  The swimmerets ofJasus lalandii, in contrast to those well known in the nephropid lobsters (e.g.Homarus) and astacurans (crayfish), do not display spontaneous antero-posterior beating, but are either apposed actively to the ventral surface of the abdomen, or rotated outward (Fig. 2). These movements are imposed by the geometrical arrangement of the bicondylar joints at the base of the swimmeret (Fig. 3), and involve contraction of either the remotor muscle, or the promotor-rotator muscles (Figs. 2, 3). Each swimmeret includes a short, thick blade-like exopodite that contains two antagonistic muscles, a large curler and a small adductor muscle (Fig. 3). Each swimmeret is innervated by 80 motor neurons (MNs) which are disposed in two clusters in the ganglion.
2.  The modulation of the tonic discharge of the muscles which maintain the swimmeret position at rest (remotor and curler) has been studied in two situations: body rolling (Fig. 4) and walking activity (Fig. 5). In the female, in which the most anterior pair of swimmerets are biramous, both endopodite and exopodite curler muscles display the same responses to body rolling (Fig. 4). In all these situations no overt swimmeret movement occurs.
3.  Nevertheless, rhythmicity exists inJasus, but it is limited to the gravid female when the swimmerets bear the eggs (Fig. 6). In contrast to other decapod Crustacea, this swimmeret beating is not metachronous (Fig. 6).
4.  Movement monitoring (Fig. 7) and EMG recordings (Figs. 9, 10) have demonstrated the involvement of the swimmerets in the three phases of the tail flick response (preparation, flexion, extension). During the preparatory phase, in response to mechanical stimulation of the legs, the swimmerets open on the stimulated side (on both sides in the case of a symmetrical stimulation) (Fig. 7). During the rapid abdominal flexion of the tail flick all swimmerets open fully regardless of the stimulus (Figs. 7, 8). Two different units in the rotator muscle EMG are responsible for swimmeret opening during the preparatory and the flexion phases of the tail flick (Figs. 9, 10).
5.  The curler muscle of the endopodite in the female displays antagonistic activities to that of the exopodite during tail flicks (Fig. 10).
6.  Selective swimmeret blockage demonstrates that they contribute to the thrust efficacy in tail flicks. In particular they are responsible for the variation of the maximal force produced at its onset. This effect could be interpreted as a consequence of force redistribution by the swimmerets acting on water flow (produced by the tail fan). This mechanism implies a functional role for the swimmerets in righting and steering responses (Fig. 11).
  相似文献   

3.
The heart of Squilla oratoria is innervated by processes arising from the cardiac ganglion, which lies on the outer surface of the heart wall. The ganglion is regulated by one pair of cardioinhibitory nerves and two pairs of cardioacceleratory nerves. Cardiac acceleration accompanied activation of the five pairs of swimmerets in the first to the fifth abdominal segments. The cardioacceleratory nerves were activated when swimmerets beat strongly. Activation of the cardioacceleratory nerves was caused by electrical stimuli to a nerve branch extending to the swimmerets from the first nerve root of the abdominal ganglion. Bursts of afferent impulses were recorded from the nerve branch of the first nerve root corresponding to periods of protractive and retractive swimmeret movements. Afferent impulses were recorded from the nerve branch when the articular membrane was artificially boosted up. Cardiac acceleration during active swimmeret movements in Squilla is attributable to a reflexive response triggered by the movements. Putative mechanoproprioceptors on the articular membrane between the sterna and basipodite in the swimmerets may be responsible for the cardioacceleratory reflex.  相似文献   

4.
The sensilla on the male and female second swimmerets are sexually dimorphic. Female swimmerets contain many long "smooth hairs" (long simple setae) on the coxa and rami. The endopodite of the male swimmeret has an accessory lobe covered with short "bristly spines" (serrate setae). In both sexes the swimmeret rami are lined by "feathered hairs" (plumose setae). The influence of mechanosensory stimulation of these sensilla upon abdominal tonic motor activity was analyzed in an in vitro swimmeret-nerve cord preparation. Movement of several clusters of smooth hairs produced an abdominal extension program by exciting the flexor inhibitor f5, inhibiting the flexor excitors, and activating several extensors. Stimulation of the male bristly spines excited the medium-sized flexor excitors f3 and f4. In both sexes the feathered hairs did not generate any response to mechanical stimulation. We infer that in nongravid females the smooth hairs are involved in receiving mechanosensitive cues to support abdominal extension. Bristly spines may contribute to postural adjustments that assist mating. The long latencies of these responses and their propagation to adjacent ganglia suggest that they are mediated by postural interneurons rather than by direct afferent terminations on postural motoneurons.  相似文献   

5.
Swimmeret beating was monitored in freely moving specimens of the crayfish Procambarus clarkii as they exhibited defense turn responses to tactile stimuli. Analysis of videotape records revealed alterations in swimmeret beating during turning responses compared to straight, forward walking. During turns, swimmerets beat with shorter periods and smaller amplitude power strokes than during straight walking. Coordination between swimmerets also changed. Swimmerets on the side toward which the animal turned tended to lag behind their contralateral partners, rather than beat in synchrony as in straight walking, and ipsilateral coordination was loosened relative to straight walking. Asynchronous swimmeret beating accompanied asymmetric motions of the uropods in a manner similar to that observed during statocyst-dependent equilibrium reactions in P. clarkii, but removal of the statoliths did not eliminate turn-associated responses of the swimmerets. The coordinated action of the swimmerets and uropods may contribute to the torque that rotates the animal in the yaw plane. Implications of the observed changes in swimmeret coordination for understanding the underlying neuronal control system are discussed.  相似文献   

6.
Influence of walking on swimmeret beating in intact lobsters, Homarus gammarus, has been analyzed using a treadmill experimental device. Belt movement activates both leg stepping and swimmeret beating. The simultaneity of the onset of the two motor systems in this situation is demonstrated to be the result of a startle response initiated when the belt begins to move. This reaction consists of a non-specific motor activity involving several antagonist postural and dynamic muscles. Abdominal extension and vigorous swimmeret beating are the main featurs of this reaction. The main characteristics of the swimmeret beating as defined by Davis (1969) has been observed here in sequences without walking. However during long walking sequences a very different swimmeret beating pattern occurs. It is suggested that this slow swimmeret beating is completely subordinate to the walking rhythm during sequences of absolute coordination. In more rapid swimmeret beating a relative coordination with leg stepping is very common. The functional meaning of this linkage between legs and swimmerets is discussed.  相似文献   

7.
Here we demonstrate the dissection of the crayfish abdominal nerve cord. The preparation comprises the last two thoracic ganglia (T4, T5) and the chain of abdominal ganglia (A1 to A6). This chain of ganglia includes the part of the central nervous system (CNS) that drives coordinated locomotion of the pleopods (swimmerets): the swimmeret system. It is known for over five decades that in crayfish each swimmeret is driven by its own independent pattern generating kernel that generates rhythmic alternating activity 1-3. The motor neurons innervating the musculature of each swimmeret comprise two anatomically and functionally distinct populations 4. One is responsible for the retraction (power stroke, PS) of the swimmeret. The other drives the protraction (return stroke, RS) of the swimmeret. Motor neurons of the swimmeret system are able to produce spontaneously a fictive motor pattern, which is identical to the pattern recorded in vivo 1.The aim of this report is to introduce an interesting and convenient model system for studying rhythm generating networks and coordination of independent microcircuits for students’ practical laboratory courses. The protocol provided includes step-by-step instructions for the dissection of the crayfish’s abdominal nerve cord, pinning of the isolated chain of ganglia, desheathing the ganglia and recording the swimmerets fictive motor pattern extracellularly from the isolated nervous system.Additionally, we can monitor the activity of swimmeret neurons recorded intracellularly from dendrites. Here we also describe briefly these techniques and provide some examples. Furthermore, the morphology of swimmeret neurons can be assessed using various staining techniques. Here we provide examples of intracellular (by iontophoresis) dye filled neurons and backfills of pools of swimmeret motor neurons. In our lab we use this preparation to study basic functions of fictive locomotion, the effect of sensory feedback on the activity of the CNS, and coordination between microcircuits on a cellular level.  相似文献   

8.
The mechanosensory innervation of the lobster (Homarus americanus) swimmeret was examined by electrophysiologically recording afferent spike responses initiated by localized mechanical stimulation of the caudal surface of the swimmeret. Two functional groups of subcuticular hypodermal mechanoreceptors innervate the swimmeret. Afferents of one group innervate the small discrete "ridges" of calcified cuticle lining the margins of both swimmeret rami. Putative ridge receptors are bipolar sensory neurons responding phasically to deformation of the ridge cuticle with the number and frequency of impulses produced dependent on stimulus strength and velocity. Afferents of the second group, which innervate substantial areas of hypodermis underlying the soft, flexible cuticular regions of the swimmeret, were designated "wide-field" hypodermal mechanoreceptors. These neurons have multiterminal receptive fields and respond phaso-tonically to cuticular distortion. The response properties of both types of hypodermal mechanoreceptors imply that they are activated during the characteristic beating movements of the swimmerets.  相似文献   

9.
Eugene E. Harris and Jody Hey (1999). Human Demography in the Pleistocene: Do Mitochondrial and Nuclear Genes Tell the Same Story? Evol. Anthropol. 8: 81–86. On page 84 at the end of 1st paragraph of the 2nd column should read “. . .intergenetic variation Xq 13.3 to about 535,000 years,39. . .” On page 84 in the 2nd paragraph of the 3rd column should read “. . .and seem to indicate widespread or restricted gene flow among populations.”19,48,49 On page 85 in the 2nd paragraph of the 1st column should read “. . .united by gene flow at zones of overlap.”53  相似文献   

10.
Summary Pagurus rubricatus is predatory, detrivorous, macrophagous, and to a small degree, a suspension feeder. The crab searches for small invertebrates by digging shallow pits in the sediment. During this process it feeds on detritus obtained either directly from the sediment or scoured off gravel granules. Particles trapped by the dense setation of the 2nd and 3rd maxillipeds are brushed off and ingested.The distribution of the various types of setae on the mouthparts is mapped and structure of the mouthparts and their setae is correlated with function. Sediment collected by the pereiopods is brushed off by the endopodites of the 3rd maxillipeds and transferred to the inner mouthparts by the endopodites of the 2nd maxillipeds. The basipodites of the 1st maxillae form a filter screen through which particles of suitable size are pushed by the 2nd maxillae. Rejected particles are discarded by the exhalant stream via the currents generated by the exopodites of the maxillipeds. Specialized setae on the 2nd maxillae scour detritus from the surface of gravel granules applied to these appendages by the 2nd and 3rd maxillipeds. Interlocking setae from different appendages form a number of screens the main function of which is to retain material in the buccal region. The exopodite and endopodite of the 1st maxilliped and the endopodites of the 1st and 2nd maxillipeds form a channel which funnels the exhalant respiratory current away from the crab. The main grooming appendages are the endopodites of the 3rd maxillipeds, however, most of the other mouthparts have a self-cleaning function.  相似文献   

11.
The swimmerets in the abdomen of the lobster Homarus americanus are paired external appendages whose back and forth propulsive movements are brought about largely by a group of power and return stroke muscles located in the lateral abdominal cavity. We find functional innervation of these muscles by several excitatory axons and a single inhibitor in embryonic and stage 1 larval lobsters before the external appendages are even formed. This early innervation is via a few nerve bundles in which branches of the motor axons are intertwined in a complex manner. As the swimmerets develop to maturity in later larval and juvenile stages, the innervation consisting usually of several excitor and a single inhibitor synaptic terminals becomes localized to individual muscles. Patterned synaptic activity in these muscles was not seen in the embryonic and larval stages but has been shown in early juvenile stages, when it coincides with the onset of rhythmic movement of the swimmerets. Consequently, such early innervation of the swimmeret muscles may be influential in establishing the central circuitry for the generation of patterned activity, a possibility that was discounted in a previous study (Proc. Natl. Acad. Sci. USA, 70:954-958).  相似文献   

12.
The development of locomotor systems in the lobster Homarusamericanus is described. The tail—flip escape responseis fully developed when the larvae hatch, and occurs withoutthe participation of giant fibers. The abdominal swimmeretsare undifferentiated at hatching, but are fully developed twoto three weeks later when the animals molt to the fourth larvalstage. Forward locomotion in the pelagic larvae is achievedusing thoracic swimming appendages until the fourth larval stage,when these degenerate and the swimmerets assume the locomotorrole. The hypothesis that peripheral structures specify the centralnervous connections of motoneurons during ontogeny was testedin the swimmeret system. Presumptive swimmeret appendages, includingprospective muscle and sense organs, were extirpated prior totheir differentiation in newly hatched larvae. The correspondingswimmeret motoneurons nevertheless grew and formed normal centralconnections, as evidenced by the appearance of normal patternsof rhythmic locomotor discharge and normal reflexes at the usualtime. Moreover, swimmeret motoneurons retained normal patternsof motor output even when the regeneration of their target appendageswas prevented for as long as two months. Therefore, the formationof normal motor output patterns during ontogeny is not dependentupon feedback from differentiated target muscle nor from senseorgans which normally monitor the results of the motor activity.  相似文献   

13.
Young plants of E. intestinalis have been grown in culture. Cutting off the thalli of attached plants just above the basal rhizoids leads to the regeneration of new branches. After a short time the point of wounding is indistinguishable. The process can be repeated many times; each regeneration resulting in a more branched thallus. Segments of unattached plants kept in culture may give rise to rhizoids from the basal cut ends and to papillae from the upper ends. They may also produce “bottle brush” forms similar to those found amongst ship-fouling algae. Such forms seem to arise when “swarmers” are retained in the parent cell and germinate in situ to give aggregations of juvenile plants. Their formation can be stimulated by a temperature shock.  相似文献   

14.
Summary We describe the structures and physiological properties of thirteen kinds of local interneurons in the swimmeret system of the crayfish,Pacifastacus leniusculus. Eight are unilateral, with processes confined to one side of the midline (Figs. 1, 2); five are bilateral, with processes on both sides of the ganglion (Fig. 6). All have most of their branches in the lateral neuropils. All of the unilateral local interneurons were nonspiking; two of the bilateral interneurons generate action potentials. Three kinds of unilateral interneurons could reset the bursting rhythm or could initiate bursting in quiescent nerve cords. Four others drove tonic firing of motor neurons. Four kinds of bilateral interneurons were premotor, and could affect the period and phase of both pattern generators in their ganglion. One unilateral and one bilateral interneuron were sensory interneurons. At least one bilateral interneuron received input from both pattern generators.Different premotor local interneurons function either in pattern generation, or in hemisegmental coordination of groups of motor neurons, or in bilateral synchronization of the ganglionic pairs of local pattern-generators for the swimmerets.Abbreviations G1. ganglion 1. - LN lateral neuropil - MT miniscule tract  相似文献   

15.
There coexist two types of neuronal terminal processes attaching to elastic strands at the socket of the swimmeret in Bathynomus doederleini. One of the processes, stretch receptor I is derived from the 1st nerve root of the abdominal ganglion. The other, stretch receptor II is derived from the 2nd nerve root of the ganglion. Both axons of stretch receptors are very thick (30-60 micro m) at sites before the terminal arborization. Cell bodies of the stretch receptors are located in the ganglion of their own segments. The neuronal cell body of the stretch receptor I is located at the anterior half of the hemiganglion ipsilateral to the periphery, and the neuronal cell body of the stretch receptor II at the posterior half of the hemiganglion contralateral to the periphery. Their signaling modalities in response to swimmeret movements were analyzed from intracellular recordings from the cell bodies. Stretch receptor I produced a sustained hyperpolarizing potential in response to protraction of the swimmeret. Stretch receptor II produced a sustained depolarizing potential in response to the protraction, and moreover, generated spike potentials on the rising phase of the depolarizing potential according to its height and steepness. Both the stretch receptors are a push-pull set of elastic strand stretch receptors for the angular position and velocity of swimmeret movements.  相似文献   

16.
Computer modeling revealed the following three regimes of heart rate dynamics: linear dynamics, “1st degree chaos,” and “2nd degree chaos.” This study investigated a stability of these regimes with respect to changes in initial conditions. The results show that the greatest stability is notable for the linear regime. For this regime small errors in values of initial conditions can not sharply change the initial dynamics of RR intervals. Both nonlinear regimes of heart rate dynamics are unstable, and a degree of instability of regime “2nd degree chaos” is higher in comparison with regime “1st degree chaos.” The results of computer modeling are in agreement with experimental data pointing to the existence of a relationship between the degree of heart rate irregularity and cardiac electrical stability.  相似文献   

17.
Feathered hair sensilla fringe both rami of the lobster (Homarus americanus) swimmeret. The sensory response to hair displacement was characterized by recording afferent impulses extracellularly from the swimmeret sensory nerve while deflecting sensilla with a rigidly-coupled probe or controlled water movements. Two populations of hairs were observed: "distal" hairs localized to the distal 1/3 of each ramus and "proximal" hairs near its base. Distal hairs are not innervated by a mechanosensory neuron but instead act as levers producing strain within adjacent cuticle capable of activating a nearby hypodermal mechanoreceptor. Hair deflections of 25 degrees or more are required to evoke an afferent response and this response is dependent on hair deflection direction. The frequency and duration of the afferent discharge evoked are determined by the velocity of hair displacement. Each proximal hair is innervated by a single mechanosensory neuron responding phasically to hair deflections as small as 0.2 degrees in amplitude. Deflection at frequencies up to 5 Hz elicits a single action potential for each hair movement; at higher frequencies many deflections fail to evoke an afferent response. These sensilla, which are mechanically coupled, may be activated by the turbulent flow of water produced by the swimmerets during their characteristic beating movements.  相似文献   

18.
A study has been made of the interrelations between rhythmical exopodite beating in different larval stages and swimmeret beating in poast-larval stages of the lobster Homarus gammarus. Data on exopodite beat cycle durations have been used for statistical comparisons of exopodite performance within one larva, and also between different stages of larval development. Inter-exopodite comparisons reveal clear bilateral differences (table 1), although there is no consistently favoured relationship (tables 2 and 3). There are significant differences in cycle duration between the first three developmental stages, with a slight increase at the first moult, and a marked decrease at the second (table 4). However, within each stage the repeat frequency exhibits little change (table 5). Therefore it appears that changes in swimming behaviour occur discontinuously in development, and are associated with the larval moults. It is suggested that changes in beat frequency, and especially the faster beating in stage III, may represent responses to changed loading conditions (table 7). Measurements of swimmeret beating in post-larval lobsters have been analysed in terms of cycle durations, and inter- and intra-segmental phase relations. Swimmeret beating patterns are very regular (figure 1), but not restricted to a narrow range of frequencies (table 6a). Intersegmental phase lag remains constant around 0.2 (figure 3) independent of beat frequency (figure 4). Similarly the powerstroke/returnstroke ratio of approximately 0.5 (figure 5) shows no significant correlation with cycle duration (figure 6). Differences emerge in the performance of larval exopodites and post-larval swimmerets (table 6b), although the possibility cannot be excluded that the larval exopodite oscillator in some way influences the developing action of the post-larval swimmeret system.  相似文献   

19.
The pollen brush commonly is referred to as a “bearded” or “pubescent” style in taxonomic literature and traditionally is taken to be an aggregation of trichomes on the distal end of the style, and occasionally including the stigma. We present data that support the taxonomic utility of the pollen brush but define it more specifically as a dense aggregation of erect trichomes emanating from the style (not stigma or ovary) and functioning in secondary pollen presentation. We recommend avoiding such vague terminology as bearded or pubescent styles as these refer not only to the pollen brush but also to ciliate and penicillate stigmas and ciliate styles. The latter three conditions have some taxonomic use, and since their occurrence is not necessarily correlated with the presence of a pollen brush, they should be distinguished from it. We estimate that the pollen brush has arisen independently in the following eight taxa: 1) Crotalaria and Bolusia (Crotalaraieae), 2) subtribe Coluteinae (Galegeae), 3) Tephrosia subgenus Barbistyla (Millettieae), 4) Adenodolichos (Phaseoleae subtribe Cajaninae), 5) Clitoria (Phaseoleae subtribe Clitoriinae), 6) the subtribe Phaseolinae (Phaseoleae), 7) the Robinia group (Robinieae), and 8) the tribe Vicieae. Its hypothesized homology within each of these groups is supported by a cooccurrence with other taxonomic characters, both morphological and molecular.  相似文献   

20.
The expression of both swimmeret and postural motor patterns in crayfish (Pacifastacus leniusculus) were affected by stimulation of a second root of a thoracic ganglion. The response of the swimmeret system depended on the state of the postural system. In most cases, the response of the swimmeret system outlasted the stimulus.Stimulation of a thoracic second root also elicited coordinated responses from the postural system, that outlasted the stimulus. In different preparations, either the flexor excitor motor neurones or the extensor excitor motor neurones were excited by this stimulation. In every case, excitation of one set of motor neurones was accompanied by inhibition of that group's functional antagonists.This stimulation seemed to coordinate the activity of both systems; when stimulation inhibited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were excited. When stimulation excited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were inhibited.Two classes of interneurones that responded to stimulation of a thoracic second root were encountered in the first abdominal ganglion. These interneurones could be the pathway that coordinates the response of the postural and swimmeret systems to stimulation of a thoracic second root.Abbreviations TSR thoracic second root - epsp excitatory post-synaptic potential - ipsp inhibitory post-synaptic potential - EJP excitatory jonctional potential - PS power-stroke - RS return-stroke - INT interneurone - N1 first segmental nerve - N2 second segmental nerve - N3 third segmental nerve - A1 abdominal ganglion 1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号