首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The mode of formation of the myoneural and myotendinous junctions was investigated in the thigh muscles of the chick embryo. Myotendinous junctions first appeared on day 11 of incubation, whereas myoneural junctions developed on day 12. Intracellular AChE activity in the muscles increased by the 12th day of incubation, and decreased rapidly after the formation of the myoneural junctions. Light and electron microscopically, AChE activity was demonstrated in the nuclear envelope, sarcoplasmic reticulum, Golgi complex, and in large granules which appeared to be derived from the Golgi complex. Large granules showing an intense AChE activity accumulated in the sarcoplasm at the poles of the muscle fiber before the formation of myotendinous junctions. After the translocation of this intracellular enzyme onto the sarcolemma, most likely the result of an exocytosis of the granules, the myotendinous junctions were formed. The AChE-rich granules present in the middle of myotubes developed into spindle- or comma-shaped cisternae which were located in the sarcoplasm just below the presumptive motor endplates. The present results suggest that the transport of AChE-rich granules to the sarcolemma is the first step in the formation of myoneural and myotendinous junctions.This work was carried out under grant 38848 from the Ministry of Education of Japan  相似文献   

2.
Talin at myotendinous junctions   总被引:11,自引:8,他引:3       下载免费PDF全文
Junctions formed by skeletal muscles where they adhere to tendons, called myotendinous junctions, are sites of tight adhesion and where forces generated by the cell are placed on the substratum. In this regard, myotendinous junctions and focal contacts of fibroblasts in vitro are analogues. Talin is a protein located at focal contacts that may be involved in force transmission from actin filaments to the plasma membrane. This study investigates whether talin is also found at myotendinous junctions. Protein separations on SDS polyacrylamide gels and immunolabeling procedures show that talin is present in skeletal muscle. Immunofluorescence microscopy using anti-talin indicates that talin is found concentrated at myotendinous junctions and in lesser amounts in periodic bands over nonjunctional regions. Electron microscopic immunolabeling shows talin is a component of the digitlike processes of muscle cells that extend into tendons at myotendinous junctions. These findings indicate that there may be similarities in the molecular composition of focal contacts and myotendinous junctions in addition to functional analogies.  相似文献   

3.
Myotendinous junctions of tonic muscle cells: structure and loading   总被引:6,自引:0,他引:6  
Summary Regions within frog semitendinosus muscle that are rich in tonic muscle cells were identified histochemically by myosin adenosine triphosphatase- and succinic dehydrogenase-staining procedures. Bundles of cells still attached to tendinous insertions were removed from those sites, prepared for electron microscopy and sectioned longitudinally through their myotendinous junctions. Tonic cells were identified by electron-microscopic criteria and their myotendinous junctions' morphology evaluated by morphometry. Although junctional components appear identical to those in twitch cells, the degree of membrane folding increases tonic junction area by a factor of 50.2 whereas twitch cells' junctional area is increased 22.2 times by folding relative to cells terminating as right circular cylinders. Calculations show that the tonic cell junction bears average loads of 3.4×103 N · m-2 during maximum force generation and that nearly all of the load is borne as shear stress at the junction. The junctions of twitch cells bear average loads of 1.6×104 N · m-2 during peak tension. The findings indicate that the magnitude of loading does not alone determine the degree of junctional membrane folding. Interpretation of the data in view of viscoelastic behavior of membranes indicates that duration of loading may be a functionally important correlate to degree of membrane folding at myotendinous junctions.  相似文献   

4.
Myofibrils are linked to the cell membrane at myotendinous junctions located at the ends of muscle fibers, and at costameres, sites positioned periodically along lateral surfaces of muscle cells. Both of these sites are enriched in proteins that link active components of myofibrils to the cell membrane. Costameres are also enriched in desmin intermediate filaments that link passive components of myofibrils to the lateral surfaces of muscle cells. In this study, the possibility that desmin is also found between the terminal Z-disk of myofibrils and the myotendinous junction membrane is examined by immunocytochemistry and by KI-extraction procedures. Data presented show that desmin is located in the filamentous core of cellular processes at myotendinous junctions at sites 30 nm or more from the membrane. This core lies deep to subsarcolemmal material previously shown to contain talin, vinculin, and dystrophin. The distance from desmin to the membrane suggests desmin does not interact directly with membrane proteins at the junction. Immunoblots and indirect immunofluorescence of junctional regions of muscle compared to nonjunctional regions show no apparent enrichment of desmin at junctional sites, although vinculin, another costameric and junctional component, is significantly enriched at junctional regions. These findings show that passive elements of myofibrils may be continuous from myotendinous junctions of muscle origin to insertion via desmin filaments located between terminal Z-disks and the junctional membrane. This can provide a system in parallel to that involving thin filaments, vinculin, and talin for linking myofibrils to the cell membrane at myotendinous junctions.  相似文献   

5.
Summary The distribution of gap junctions in mature larvalDrosophila melanogaster wing discs was analyzed by means of quantitative electron microscopy. Gap junctions are non-randomly distributed in the proximal-distal disc axis and in the apical-basal cell axis of the epithelium. In the epithelial cells, the surface density, number and length of gap junctions are greatest in the apical cell region and distal disc region. The average gap junction surface density is 0.0572 m–1 and 2.77% of the lateral cell surface is composed of gap junctions. In the adepithelial cells, the gap junction surface density is 0.0005 m–1 and 0.06% of the cell surface is composed of gap junctions. No gap junctions were observed between epithelial cells and adepithelial cells. The absolute area of gap junctions was estimated in a proximal-distal strip of cells in the disc and is considerably less in the folded regions of the epithelium compared to the flat notum and wing pouch regions. The results are discussed with respect to pattern formation and growth control in imaginal discs.  相似文献   

6.
Subcellular fractions enriched in gap junctions with an ultrastructure similar to those in intact insect tissue have been obtained by extracting crude membranes from the tobacco budworm Heliothis virescens (Lepidoptera: Noctuidae) with 2.5 mM NaOH. n-Octyl--d-glucopyranoside (OG) was used to further purify integral membrane proteins in the NaOH-extracted fractions. A polyclonal antibody (R16) is described that specifically labels nonextracted and NaOH-extracted gap junctions in cell fractions by electron microscope immunocytochemistry. R16 immunostaining of sectioned Heliothis testis at the light-microscope level yields a pattern of immunoreactivity consistent with the distribution of gap junctions in the tissue. R16 identifies a 40-kDa protein as a candidate gap junction protein on immunoblots of crude membrane, NaOH-extracted and NaOH/OG-extracted fractions.  相似文献   

7.
Summary The anatomical basis of the vertebrate blood-brain barrier is a series of tight junctions between endothelial cells of capillaries in the central nervous system. Over two decades ago, tight junctions were also proposed as the basis of the blood-brain barrier in insects. Currently there is a growing understanding that septate junctions might possess barrier properties in various invertebrate epithelial cells. We now examine these two views by studying the blood-brain barrier properties of the early postembryonic larva of a dipteran fly (Delia platura) by transmission electron microscopy. Newly hatched larvae possess a functioning blood-brain barrier that excludes the extracellular tracer, ionic lanthanum. This barrier is intact throughout the second instar stage as well. The ultrastructural correlate of this barrier is a series of extensive septate junctions that pervade the intercellular space between adjacent perineurial cells. No tight junctions were located in either nerve, glial or perineurial cell layers. We suggest that the overall barrier might involve septate junctions within extensive, meandering intercellular clefts.  相似文献   

8.
Summary A procedure has been developed to isolate gap junction-enriched subcellular fractions from Drosophila. Crude membranes from larval homogenates were extracted with 1% N-lauroyl sarcosine in 6 M urea and the gap junctions were collected by centrifugation. The major proteins were separated by SDS PAGE and purified by electro-elution. Electron microscopy revealed structurally pleiomorphic gap junctions in the fractions which included (1) conventional, 16–18 nm-wide septalaminar, (2) collapsed, 13–15 nm-wide pentalaminar, (3) split, and (4) aggregated forms. The fractions contained five major proteins with apparent molecular weights of 18, 26, 36, 52 and 54 kD. Evidence based on (1) the degradation and aggregation behavior of the major proteins following electro-elution and reelectrophoresis, (2) immunological cross-reactivities by affinity-purified antibodies against the major proteins on immunoblots, and (3) immunofluorescent staining of presumptive gap junctions in Drosophila imaginal discs at the light-microscopic level and immunogold staining of purified gap junctions at the electron-microscopic level suggests that the major proteins are interrelated and of gap-junction origin.  相似文献   

9.
It is the precise connectivity between skeletal muscles and their corresponding tendon cells to form a functional myotendinous junction (MTJ) that allows for the force generation required for muscle contraction and organismal movement. The Drosophila MTJ is composed of secreted extracellular matrix (ECM) proteins deposited between integrin-mediated hemi-adherens junctions on the surface of muscle and tendon cells. In this paper, we have identified a novel, cytoplasmic role for the canonical nuclear import protein Moleskin (Msk) in Drosophila embryonic somatic muscle attachment. Msk protein is enriched at muscle attachment sites in late embryogenesis and msk mutant embryos exhibit a failure in muscle–tendon cell attachment. Although the muscle–tendon attachment sites are reduced in size, components of the integrin complexes and ECM proteins are properly localized in msk mutant embryos. However, msk mutants fail to localize phosphorylated focal adhesion kinase (pFAK) to the sites of muscle–tendon cell junctions. In addition, the tendon cell specific proteins Stripe (Sr) and activated mitogen-activated protein kinase (MAPK) are reduced in msk mutant embryos. Our rescue experiments demonstrate that Msk is required in the muscle cell, but not in the tendon cells. Moreover, muscle attachment defects due to loss of Msk are rescued by an activated form of MAPK or the secreted epidermal growth factor receptor (Egfr) ligand Vein. Taken together, these findings provide strong evidence that Msk signals non-autonomously through the Vein-Egfr signaling pathway for late tendon cell late differentiation and/or maintenance.  相似文献   

10.
Desmin, the main component of intermediate filaments (IFs) in mature skeletal muscle, forms an interlinking scaffold around myofibrils with connections to the sarcolemma and the nuclear membrane. Desmin is enriched in neuromuscular and myotendinous junctions. Mice lacking the desmin gene develop normally and reproduce. However, postnatally they develop a cardiomyopathy and a dystrophy in highly used muscles. We have investigated whether and how neuromuscular and myotendinous junctions are affected and whether nestin compensates for the lack of desmin in the knock-out (K/O) mice. We show that neither neuromuscular nor myotendinous junctions were markedly affected in the desmin K/O mice. In neuromuscular junctions nestin was present between the postjunctional folds and the subneural nuclei and between the nucleus and the myofibrillar cytoskeleton. In myotendinous junctions nestin was present between myofibrils at the Z-disc level and in longitudinal strands close to and at the junction. Nestin expression at these specialized sites, as well as during myogenesis and myofibrillogenesis, is independent of the presence of desmin. In desmin K/O mice nestin was also found in regenerating myofibers. The presence of nestin at neuromuscular and myotendinous junctions might provide enough strength for preservation and organization of the junctional areas, although desmin is lacking.  相似文献   

11.
alpha-Dystrobrevin (DB), a cytoplasmic component of the dystrophin-glycoprotein complex, is found throughout the sarcolemma of muscle cells. Mice lacking alphaDB exhibit muscular dystrophy, defects in maturation of neuromuscular junctions (NMJs) and, as shown here, abnormal myotendinous junctions (MTJs). In normal muscle, alternative splicing produces two main alphaDB isoforms, alphaDB1 and alphaDB2, with common NH2-terminal but distinct COOH-terminal domains. alphaDB1, whose COOH-terminal extension can be tyrosine phosphorylated, is concentrated at the NMJs and MTJs. alphaDB2, which is not tyrosine phosphorylated, is the predominant isoform in extrajunctional regions, and is also present at NMJs and MTJs. Transgenic expression of either isoform in alphaDB-/- mice prevented muscle fiber degeneration; however, only alphaDB1 completely corrected defects at the NMJs (abnormal acetylcholine receptor patterning, rapid turnover, and low density) and MTJs (shortened junctional folds). Site-directed mutagenesis revealed that the effectiveness of alphaDB1 in stabilizing the NMJ depends in part on its ability to serve as a tyrosine kinase substrate. Thus, alphaDB1 phosphorylation may be a key regulatory point for synaptic remodeling. More generally, alphaDB may play multiple roles in muscle by means of differential distribution of isoforms with distinct signaling or structural properties.  相似文献   

12.
Gap junction-enriched fractions were prepared from larvae of the tobacco budworm Heliothis virescens using the NaOH procedure in the presence or absence of protease inhibitors and were analyzed by SDS-PAGE, immunoblotting and EM immunocytochemistry. Protease inhibitor fractions contained a 48-kDa protein in addition to the 10 proteins in fractions with and without inhibitors. Three polyclonal antibodies were used as probes for gap junction plaques and proteins: R16, against an 40-kDa candidate gap junction protein from Drosophila melanogaster; R17, against the 40-kDa candidate gap junction protein from H. virescens; and R18AP, an affinity purified antibody against a consensus sequence of N-terminal amino acids 2–21 of the H. virescens 40-kDa protein. R16, R17, and R18AP stain the 40- and 48-kDa proteins, R16 and R18AP stain a 64-kDa protein, and R16 stains an 30-kDa protein in the absence of inhibitors. Inclusion of protease inhibitors had no effect on gap junction ultrastructure. R16 and R17 label gap junction plaques in crude membrane and NaOH fractions, whereas R18AP exhibits only a low level of reactivity with gap junctions in crude membrane fractions and none with gap junctions in NaOH fractions. The results show that the 30-, 40-, 48- and 64-kDa proteins are immunologically related and are associated with gap junctions in H. virescens, the N-terminus of the 40-kDa protein is relatively inaccessible or easily lost, and the 48-kDa protein is protease-sensitive.  相似文献   

13.
Summary Freeze-fracture replicas show that communicating (gap) junctions are present between chloride cells in the gill epithelium of young adults of the Southern Hemisphere lamprey, Geotria australis, acclimated to full-strength sea water. The junctions, which were already present when these lampreys were migrating downstream, may help coordinate the secretory activities of the chloride cells during the marine phase of the lamprey life cycle.  相似文献   

14.
Here we describe a novel specific component of tissue junctions, collagen XXII. It was first identified by screening an EST data base and subsequently expressed as a recombinant protein and characterized as an authentic tissue component. The COL22A1 gene on human chromosome 8q24.2 encodes a collagen that structurally belongs to the FACIT protein family (fibril-associated collagens with interrupted triple helices). Collagen XXII exhibits a striking restricted localization at tissue junctions such as the myotendinous junction in skeletal and heart muscle, the articular cartilage-synovial fluid junction, or the border between the anagen hair follicle and the dermis in the skin. It is deposited in the basement membrane zone of the myotendinous junction and the hair follicle and associated with the extrafibrillar matrix in cartilage. In situ hybridization of myotendinous junctions revealed that muscle cells produce collagen XXII, and functional tests demonstrated that collagen XXII acts as a cell adhesion ligand for skin epithelial cells and fibroblasts. This novel gene product, collagen XXII, is the first specific extracellular matrix protein present only at tissue junctions.  相似文献   

15.
Whole muscles loaded to failure frequently fail at or near myotendinous junctions. The present investigation was directed toward determining the breaking stress and failure site of intact and injured myotendinous junction preparations consisting of muscle cells dissected free from surrounding parallel structures but still attached to tendon collagen fibers. These tests show that the breaking stress for intact myotendinous units is 2.7 x 10(5) N/m2, expressed relative to cell cross-sectional area. Failure occurs immediately external to the junction membrane between the cell membrane and lamina densa of the basement membrane. Site and stress at failure are independent of strain and strain rate over a biologically relevant range. Breaking stress in the plane of the membrane, corrected for membrane folding, is 1.2 X 10(4) N/m2. This value is not significantly greater than stress at maximum isometric tension for these cells at these sarcomere lengths. After compression injury, cells fail within the compression site at significantly lower stress (1.9 X 10(5) N/m2). These findings suggest that, in muscle strain injuries that occur under conditions simulated here, failure occurs at myotendinous junctions unless the muscle has suffered previous compression injury leading to failure within the muscle.  相似文献   

16.
Summary Smooth feather muscles (mm. pennati) consist of bundles of smooth muscle cells which are attached to the feather follicles by short elastic tendons. In addition, some muscle bundles are interrupted by elastic tendons. The elastic tendon is composed of longitudinally arranged elastic fibers which branch and wavy bundles of collagen fibrils. Smooth muscle cells of the muscle bundles are attached to each other by desmosome-like junctions and by fusion of the basal laminae. The cytoplasm of the muscle cells is characterized by conspicuous thick filaments and abundant thin and intermediate filaments. These are attached to band-like dense patches (dense bands) at the plasma membrane which are particularly broad at the tapering end of the muscle cell. The contact surface between smooth muscle cells and their elastic tendon is considerably increased (i) by deep finger-like invaginations and indentations located at the tapering muscle end, and (ii) by branching of the coarse elastic fibers into slender processes, which are attached to the richly folded surface of the muscle cell endings by peripheral microfibrils. This intimate interlocking closely resembles the myotendinous junctions in skeletal muscle. In addition to fibroblasts and fibrocytes, the myotendinous junction of the young growing chicks contains numerous so-called myofibroblasts, which are suggested to represent smooth muscle cells differentiating into fibroblasts of the developing tendon.Dedicated to Professor Dr. Helmut Leonhardt on the occasion of his 60th birthdaySupported by a grant from the Deutsche Forschungsgemeinschaft (Dr. 91/1)  相似文献   

17.
Gap junctions between cyst cells and adjacent spermatocytes have been found in Drosophila hydei by means of the freeze-etching technique. The existence of these cellular junctions suggests that these structures could serve to exchange information between the two types of cells.  相似文献   

18.
Summary The intercellular junctions in the corpora cardiaca of the locusts Schistocerca gregaria and Locusta migratoria were investigated by transmission electron microscopy. In the glandular lobes, complexes consisting of scalariform junctions and associated mitochondria, comparable to those previously observed in ion transporting epithelia, are formed between gland cells, and more rarely between gland cells and the neurons innervating them. Their structure and abundance are apparently unaffected by the stage of development or by the various experimental conditions employed. In the neural lobe, scalariform junctions form between glial cells and show close association with the endoplasmic reticulum. Gap junctions are present among glandular, neural and glial elements, and are formed between cells of the same type and of different types. Contacts resembling punctate tight junctions are widely distributed in the gland, but would be unlikely to form a barrier to diffusion. Septate junctions are formed exclusively between glial cells.  相似文献   

19.
Summary Developmental changes in the distribution of gap junctions in early, mid and late third larval stage wing discs and in pupariation+6 h and pupariation+24 h stage wing discs fromDrosophila melanogaster were analyzed by quantitative electron microscopy. Gap junctions occur in all 12 intradisc regions examined in each of the five developmental stages. Their distribution is non-random and changes during development which suggests that they are developmentally regulated. The gap junctions are not static structures, rather they grow and regress during development. The changes tend to be gradual ones without sudden increases or decreases. Gap junctions continuously form and grow in size throughout the third larval stage and during the first 6 h following pupariation. Their surface density, number, percent of the lateral plasma membrane area, and absolute area as well as the lateral plasma membrane surface density all increase during this time. Between pupariation+ 6 h and pupariation+24 h all but one of these parameters decrease indicative of gap junctional breakdown. Gap junctions are most numerous and change least during development in the apical cell regions where intercellular contacts are close and stable. They change most in the basal cell regions where intercellular contacts tend to be looser and change during development. The most dramatic change is in the absolute area which increases by a factor of 23 between the early third larval stage and pupariation+24 h. At pupariation the rate of gap junction growth undergoes a transient increase before the phase of disassembly begins. Developmental changes in gap junction surface density are closely coupled with changes in the lateral plasma membrane surface density which suggests that these may be coregulated. Evidence from mutants suggests that when the number and density of gap junctions fail to increase in proportion to lateral plasma membrane growth, wing disc development will be abnormal. Our results support the idea that some minimum gap junction density is required for normal development and that this must increase as development proceeds. The results are consistent with the notion that gap junctions are involved in pattern formation and growth control and are discussed with respect to the acquisition of competence for metamorphosis, disc growth, disc morphogenesis and changes in the hormonal environment.  相似文献   

20.
Summary Protamine is a naturally occurring basic protein (pI; 9.7 to 12.0). We have recently reported that protamine dissolved in the mucosal bath (2 to 20 m), induces about a twofold increase in transepithelial resistance inNecturus gallbladder within 10 min. Conductance decreased concomitantly with cation selectivity.In this leaky epithelium, where >90% of an applied current passes between cells, an increment in resistance of this magnitude suggests a paracellular actiona priori. To confirm this, ionic conductance across the apical cell membrane was studied with microelectrodes. Protamine increased transepithelial resistance without changing apical cell membrane voltage or fractional membrane resistance. Variation in extracellular K concentration (6 to 50mm) caused changes in apical membrane voltage not different from control.To determine if protamine-induced resistance changes were associated with structural alteration of tight junctions, gallbladders were fixedin situ at peak response and analyzed by freeze-fracture electron microscopy. According to a morphometrical analysis, the tight junctional intramembranous domain expands vertically due to incorporation of new strands (fibrils) into the main compact fibrillar meshwork.Since morphologic changes are complete within 10 min, strands are probably recycled into and out of the tight junctional membrane domain possibly by the cytoskeleton either from cytoplasmic vesicles or from intramembranous precursors. Regulation of tight junctional permeability by protamine and other perturbations may constitute a common mechanism by which leaky epithelia regulate transport, and protamine, in concentrations employed in this study, seems reasonably specific for the tight junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号