首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The ability of four squirrel monkeys and three pigtail macaques to distinguish between nine enantiomeric odor pairs sharing an isopropenyl group at the chiral center was investigated in terms of a conditioning paradigm. All animals from both species were able to discriminate between the optical isomers of limonene, carvone, dihydrocarvone, dihydrocarveole and dihydrocarvyl acetate, whereas they failed to distinguish between the (+)- and (-)-forms of perillaaldehyde and limonene oxide. The pigtail macaques, but not the squirrel monkeys, also discriminated between the antipodes of perillaalcohol and isopulegol. A comparison of the across-task patterns of discrimination performance shows a high degree of similarity among the two primate species and also between these nonhuman primates and human subjects tested in an earlier study on the same tasks. These findings suggest that between-species comparisons of the relative size of olfactory brain structures or of the number of functional olfactory receptor genes are poor predictors of olfactory discrimination performance with enantiomers.  相似文献   

2.
Using a food-rewarded two-choice instrumental conditioning paradigm we assessed the ability of South African fur seals, Arctocephalus pusillus, to discriminate between 12 enantiomeric odor pairs. The results demonstrate that the fur seals as a group were able to discriminate between the optical isomers of carvone, dihydrocarvone, dihydrocarveol, menthol, limonene oxide, α-pinene, fenchone (all p < 0.01), and β-citronellol (p < 0.05), whereas they failed to distinguish between the (+)- and (?)-forms of limonene, isopulegol, rose oxide, and camphor (all p > 0.05). An analysis of odor structure–activity relationships suggests that a combination of molecular structural properties rather than a single molecular feature may be responsible for the discriminability of enantiomeric odor pairs. A comparison between the discrimination performance of the fur seals and that of other species tested previously on the same set of enantiomers (or subsets thereof) suggests that the olfactory discrimination capabilities of this marine mammal are surprisingly well developed and not generally inferior to that of terrestrial mammals such as human subjects and non-human primates. Further, comparisons suggest that neither the relative nor the absolute size of the olfactory bulbs appear to be reliable predictors of between-species differences in olfactory discrimination capabilities. Taken together, the results of the present study support the notion that the sense of smell may play an important and hitherto underestimated role in regulating the behavior of fur seals.  相似文献   

3.
M Laska  P Teubner 《Chemical senses》1999,24(2):161-170
We tested the ability of human subjects to distinguish between enantiomers, i.e. odorants which are identical except for chirality. In a forced-choice triangular test procedure 20 subjects were repeatedly presented with 10 enantiomeric odor pairs and asked to identify the bottle containing the odd stimulus. We found (i) that as a group, the subjects were only able to significantly discriminate the optical isomers of alpha-pinene, carvone and limonene, whereas they failed to distinguish between the (+)- and (-)-forms of menthol, fenchone, rose oxide, camphor, alpha-terpineol, beta-citronellol and 2-butanol; (ii) marked individual differences in discrimination performance, ranging from subjects who were able to significantly discriminate between 6 of the 10 odor pairs to subjects who failed to do so with 9 of the 10 tasks; (iii) that with none of the 10 odor pairs were the antipodes reported to differ significantly in subjective intensity when presented at equal concentrations; and (iv) that error rates were quite stable and did not differ significantly between sessions, and thus, we observed a lack of learning or training effects. Additional tests of the degree of trigeminality and threshold measurements of the optical isomers of alpha-pinene, carvone and limonene suggest that the discriminability of these three enantiomeric odor pairs is indeed due to differences in odor quality. These findings support the assumption that enantioselective molecular odor receptors may only exist for some but not all volatile enantiomers and thus that chiral recognition of odorants may not be a general phenomenon but is restricted to some substances.  相似文献   

4.
We tested the ability of human subjects to distinguish between aliphatic odorants sharing the same number of carbon atoms but differing in their functional groups. 1-Alcohols, n-aldehydes, 2-ketones and n-carboxylic acids of four, six and eight carbon atoms, respectively, were employed. In a forced-choice triangular test procedure 20 subjects were repeatedly presented with 18 odor pairs and asked to identify the bottle containing the odd stimulus. We found (i) that as a group, the subjects performed significantly above chance level in all tasks and thus were clearly able to discriminate between all odor pairs presented; (ii) marked interindividual differences in discrimination performance, ranging from subjects who were able to significantly distinguish between all 18 odor pairs to subjects who failed to do so with 1/3 of the tasks; (iii) a lack of significant differences in performance between male and female, and between Japanese and German subjects; (iv) that odor pairs that involved 2-ketones and/or n-carboxylic acids were significantly easier to discriminate compared to odor pairs that involved 1-alcohols and/or n-aldehydes, and thus a clear dependence of discriminability on type of functional group; and (v) that aliphatic odorants with eight carbon atoms (irrespective of their oxygen moiety) were significantly more difficult to discriminate from each other compared to substances with four or six carbon atoms. The results suggest that functional groups may be an important determinant of the interaction between stimulus molecule and olfactory receptor in aliphatic substances, and thus may be a molecular property affecting odor quality in a substance class-specific manner.  相似文献   

5.
M Laska  P Teubner 《Chemical senses》1999,24(3):263-270
We tested the ability of human subjects to distinguish between members of homologous series of aliphatic alcohols (ethanol to n-octanol) and aldehydes (n-butanal to n-decanal). In a forced-choice triangular test procedure 20 subjects per series were repeatedly presented with all 21 binary combinations of the seven stimuli and asked to identify the bottle containing the odd stimulus. We found (i) that as a group, the subjects performed significantly above chance level in all tasks but two with the alcohols and all tasks but four with the aldehydes, and thus were clearly able to discriminate between most of the odor pairs presented; (ii) marked interindividual differences in discrimination performance, ranging from subjects who were able to significantly distinguish between all 21 odor pairs of a series to subjects who failed to do so with the majority of tasks; and (iii) a significant negative correlation between discrimination performance and structural similarity of odorants in terms of differences in carbon chain length for both homologous series. This suggests that carbon chain length may be one of presumably several determinants of the interaction between stimulus molecule and receptor, and thus may be a molecular property affecting odor quality of aliphatic alcohols and aldehydes.  相似文献   

6.
Laska M 《Chemical senses》2005,30(9):755-760
The ability of human subjects to distinguish between aliphatic C6 alcohols differing in presence, position, or configuration (i.e., cis-trans geometry) of a double bond was tested. In a forced-choice triangular test procedure, 20 subjects were repeatedly presented with all 21 binary combinations of the seven stimuli and asked to identify the bottle containing the odd stimulus. I found (a) that as a group, the subjects performed significantly above chance level in all tasks but two and thus were clearly able to discriminate between most of the odor pairs presented; (b) marked interindividual differences in discrimination performance, ranging from subjects who were able to significantly distinguish between all 21 odor pairs to subjects who failed to do so with 10 of the tasks; (c) that odor pairs involving two hexenols were significantly more difficult to discriminate than odor pairs that involved hexanol and one of the hexenols; (d) that odor pairs involving hexenols sharing the same geometry but differing in the position of the double bond by only one carbon atom were significantly more difficult to distinguish than odor pairs that involved hexenols differing by two carbon atoms; (e) that odor pairs involving 4-hexenols were significantly easier to discriminate than 3-hexenols, which, in turn, were significantly easier to distinguish than 2-hexenols; and (f) that odor pairs involving two cis-hexenols were significantly more difficult to discriminate than odor pairs that involved two trans-hexenols. These findings demonstrate that the presence as well as the position and configuration of a double bond affected discriminability in a systematic manner and suggest that these molecular structural features may be important determinants of the interaction between stimulus molecule and olfactory receptor and thus may affect odor quality of aliphatic alcohols.  相似文献   

7.
Conditioned honeybee workers can discriminate between enantiomeric pairs which are both congruous and incongruous odorants for human beings. These results are discussed in terms of appropriately chiral chemoreceptors, which would enable honeybee workers to distinguish floral odor sources that differ only in enantiomeric identity.  相似文献   

8.
To assess the significance of the type of oxygen moiety on odor quality of aromatic compounds, I tested the ability of human subjects to distinguish between odorants sharing a benzene ring and the same total number of carbon atoms but differing in their functional groups. Phenyl ethanol, phenyl acetaldehyde, phenyl methyl ketone, methyl benzoate and phenyl acetic acid, were employed. In a forced-choice triangular test procedure 20 subjects were repeatedly presented with all possible binary combinations of the five odorants, and asked to identify the bottle containing the odd stimulus. I found (i) that as a group, the subjects performed significantly above chance level in six of the tasks whereas they failed to do so with the four other tasks; (ii) marked interindividual differences in discrimination performance, ranging from subjects who were able to significantly distinguish between all 10 odor pairs to subjects who failed to do so with the majority of the tasks; and (iii) that odor pairs that involved methyl benzoate or phenyl methyl ketone were significantly easier to discriminate than those that involved phenyl acetaldehyde or phenyl ethanol, and thus there was a clear dependence of discriminability on type of functional group. Additional tests of the degree of trigeminality of the five aromatic substances indicated that the discriminability of the odor pairs is indeed due to differences in odor quality. A comparison of the present results with those of an earlier study that employed aliphatic odorants suggests that functional oxygen-containing groups may generally be an important determinant of the interaction between the stimulus molecule and the olfactory receptor, and thus may generally be a molecular property affecting odor quality in a substance class-specific manner. The poorer discriminatory performance of the subjects with aromatic odorants compared with corresponding aliphatic substances suggests that the structure of the alkyl rest attached to a functional group may also play a crucial role for recognition of ligands at the olfactory receptor and thus for odor quality.  相似文献   

9.
This paper reports the biotransformation of carvone, limonene, β-pinene, thymol, and linalool using whole-cell-immobilized microalgal strains isolated from paddy fields of Iran. The strains was recognized by morphological characterization and assigned according to amplified 16S/18S rRNA genes by PCR. Ten unialgal strains including Chlorella, Oocystis, Chlamydomonas, and Synechococcus were immobilized in calcium alginate beads. After a 24-h incubation with substrates, characterization and identification of biotransformation products were done by GC/MS. None of the isolated immobilized microalgae converted β-pinene. In contrast, most of these strains biotransformed carvone and limonene to the related compounds. Some strains only reduced the C = C double bond to yield the dihydrocarvone isomers while others reduced the ketone to give the dihydrocarveol. The transformation ratio showed that Oocystis sp. MCCS 033 and Synechococcus sp. MCCS 035 produced dihydrocarvone isomers with the highest efficiency. Furthermore, limonene was converted into a mixture of five corresponding products and the maximum yield was 52.1% for carvone, the bioconverted product. Only one strain, Synechococcus sp. MCCS 034, oxidized thymol, and the product obtained from thymol was thymoquinone. Also, linalooloxide isomers and dihydrolinalool were obtained from linalool, and finally dihydrolinalool was the main product. These results showed a novel conversion pathway of linalool-forming dihydrolinalool.  相似文献   

10.
Using a behavioral paradigm designed to simulate olfactory-guidedforaging, the ability of five squirrel monkeys to distinguishiso-amyl acetate from n-and iso-forms of other acetic esters(ethyl acetate to decyl acetate) and from other esters carryingthe iso-amyl group (iso-amyl propionate to iso-amyl capronate)was investigated. We found (i) that all five animals were clearlyable to discriminate between all odor pairs tested; (ii) a significantnegative correlation between discrimination performance andstructural similarity of odorants in terms of differences incarbon chain length of both the aliphatic alcohol group andthe aliphatic acid group of the esters; and (iii) that iso-and n-amyl acetate were perceived as qualitatively similar despitedifferent steric conformation. Using a triple-forced choiceprocedure, 20 human subjects were tested on the same tasks inparallel and showed a very similar pattern of discriminationperformance compared with the squirrel monkeys. Thus, the resultsof this study provide evidence of well-developed olfactory discriminationability in squirrel monkeys for aliphatic esters and supportthe assumption that human and non-human primates may share commonprinciples of odor quality perception. Chem. Senses 22: 457–465,1997.  相似文献   

11.
Ghanem A  Schurig V 《Chirality》2001,13(2):118-123
Asymmetric acetylation of racemic 1-(2-furyl)ethanol with the innocuous acyl donor isopropenyl acetate catalyzed by lipases in organic media afforded the chiral alcohol and acetate in high enantiomeric excess (up to 99%). The effect of molecular sieves as well as organic solvents on the kinetic resolution were studied. An effective separation of the enantiomers of both substrate and product was performed using gas chromatography on the chiral stationary phase heptakis-(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-beta-cyclodextrin.  相似文献   

12.
Tris (phenanthroline) metal complexes: probes for DNA helicity   总被引:1,自引:0,他引:1  
The intercalative binding of chiral tris(phenanthroline) metal complexes to DNA is stereo-selective. The enantiomeric selectivity is based upon the differential steric interactions between the two non-intercalating phenanthroline ligands of each isomer with the DNA phosphate backbone. Gel electrophoretic assays of helical unwinding, optical enrichment studies by equilibrium dialysis and luminescence titrations with separated enantiomers of (phen)3Ru2+ all indicate that the delta isomer binds preferentially to the right-handed duplex. The chiral discrimination is governed by the DNA helical asymmetry. Complete stereospecifity is seen with isomers of the bulkier RuDIP (tris-4,7-diphenylphenanthrolineruthenium(II]. While both isomers bind to Z-DNA, a poor template for discrimination, binding of lambda-RuDIP to B-DNA is precluded. These chiral complexes therefore serve as a chemical probe to distinguish left and right-handed DNA helices in solution.  相似文献   

13.
Mice pre-trained in an olfactometer were tested daily on odor detection and discrimination tasks after irrigation of their olfactory epithelium in each naris with 50 microl of 5% zinc sulfate or saline. Anterograde transport of a wheatgerm agglutinin-horseradish peroxidase (WGA-HRP) conjugate from the epithelium to the olfactory bulb was used to assess anatomical connectivity in these and in mice that were used only for histological analyses. One day after treatment, saline controls performed at high levels of accuracy in detecting vapor from solutions of 5-0.01% ethyl acetate and in an odor discrimination task but most ZnSO4-treated mice performed at chance for 5-30 days before showing recovery. Although dense WGA-HRP reaction product was found in the accessory olfactory bulb, there was little or no evidence for axonal transport to glomeruli of the main olfactory bulb in the first 4-8 days after treatment. These results demonstrate that intranasal application of ZnSO4 to mice produces a brief but essentially total disruption of functional connections from the olfactory epithelium to the main olfactory bulb and a corresponding transient anosmia.  相似文献   

14.
We asked whether odor discrimination abilities are sexually dimorphic in mice and, if so, whether the perinatal actions of estradiol contribute to these sex differences. The ability to discriminate different types of urinary odors was compared in male and female wild-type (WT) subjects and in mice with a homozygous-null mutation of the estrogen synthetic enzyme, aromatase (aromatase knockout; ArKO). Olfactory discrimination was assessed in WT and ArKO male and female mice after they were gonadectomized in adulthood and subsequently treated with estradiol benzoate. A liquid olfactometer was used to assess food-motivated olfactory discrimination capacity. All animals eventually learned to distinguish between urinary odors collected from gonadally intact males and estrous females; however, WT males as well as ArKO mice of both sexes learned this discrimination significantly more rapidly than WT females. Similar group differences were obtained when mice discriminated between urinary odors collected from gonadally intact vs. castrated males or between two non-social odorants, amyl and butyl acetate. When subjects had to discriminate volatile urinary odors from ovariectomized female mice treated with estradiol sequenced with progesterone versus estradiol alone, ArKO females quickly acquired the task whereas WT males and females as well as ArKO males failed to do so. These results demonstrated a strong sex dimorphism in olfactory discrimination ability, with WT males performing better than females. Furthermore, female ArKO mice showed an enhanced ability to discriminate very similar urinary odorants, perhaps due to an increased sensitivity of the main olfactory nervous system to adult estradiol treatment as a result of perinatal estrogen deprivation.  相似文献   

15.
Abstract

The intercalative binding of chiral tris(phenanthroline) metal complexes to DNA is stereo-selective. The enantiomeric selectivity is based upon the differential steric interactions between the two non-intercalating phenanthroline ligands of each isomer with the DNA phosphate backbone. Gel electrophoretic assays of helical unwinding, optical enrichment studies by equilibrium dialysis and luminescence titrations with separated enantiomers of (phen)3Ru2+ all indicate that the delta isomer binds preferentially to the right-handed duplex. The chiral discrimination is governed by the DNA helical asymmetry. Complete stereospecifity is seen with isomers of the bulkier RuDIP (tris-4,7-diphenylphenanthrolineruthenium(II)). While both isomers bind to Z-DNA, a poor template for discrimination, binding of Λ-RuDIP to B-DNA is precluded. These chiral complexes therefore serve as a chemical probe to distinguish left and right-handed DNA helices in solution.  相似文献   

16.
In three experiments, subjects tracked intensity of nasal irritation during sustained presentation of carbon dioxide in the nose. Experiment 1 showed that: (i). functions of peak intensity vs. concentration and latency to first non-zero ratings agreed with published literature, thereby supporting the validity of the technique; (ii). on average, rated intensity peaked approximately 3-4 s after stimulus-onset and began to fall rapidly thereafter; (iii). large and stable individual differences in temporal dynamics occurred. Experiment 2 replicated experiment 1 with some methodological refinements. In experiment 3, application of the technique revealed that the nose regains sensitivity with very brief (300-500 ms) interruptions in presentation of carbon dioxide. In short: (i). the method developed here provides a temporally fine-grained tool to study the time-course of nasal irritation, and (ii). nasal irritation from carbon dioxide shows relatively rapid temporal dynamics.  相似文献   

17.
The brain's link between perception and action involves several steps, which include stimulus transduction, neuronal coding of the stimulus, comparison to a memory template and choice of an appropriate behavioral response. All of these need time, and many studies report that the time needed to compare two stimuli correlates inversely with the perceived distance between them. We developed a behavioral assay in which we tested the time that a honeybee needs to discriminate between odors consisting of mixtures of two components, and included both very similar and very different stimuli spanning four log-concentration ranges. Bees learned to discriminate all odors, including very similar odors and the same odor at different concentrations. Even though discriminating two very similar odors appears to be a more difficult task than discriminating two very distinct substances, we found that the time needed to make a choice for or against an odor was independent of odor similarity. Our data suggest that, irrespective of the nature of the olfactory code, the bee olfactory system evaluates odor quality after a constant interval. This may ensure that odors are only assessed after the olfactory network has optimized its representation.  相似文献   

18.
Using the training procedure introduced by von Frisch in 1919, we tested the ability of free-flying honeybees to discriminate a conditioning odor from an array of 44 simultaneously presented substances. The stimuli included homologous series of aliphatic alcohols, aldehydes and ketones, isomeric forms of some of these substances, as well as several terpenes and odor mixtures, and thus comprised stimuli of varying degrees of structural similarity to any conditioning odor. We found (i) that the honeybees significantly distinguished between 97.0% of the 1848 odor pairs tested, thus showing an excellent discrimination performance when tested in a free-flying situation with an array of structurally related substances; (ii) a significant negative correlation between discrimination performance and structural similarity of odorants in terms of differences in carbon chain length with all aliphatic substance classes tested; (iii) that both the position and type of a functional group also affected discriminability of odorants in a substance class-specific manner; and (iv) striking similarities in odor structure-activity relationships between honeybees and human and nonhuman primates tested previously on a subset of substances employed here. Our findings demonstrate that the similarities found in the structural organization of the olfactory systems of insects and vertebrates are paralleled by striking similarities in relative discrimination abilities. This strongly suggests that similar mechanisms of odor coding and discrimination may underlie olfaction in vertebrates and insects.  相似文献   

19.
We assessed the influence of different odors on detection of a sweet tastant, and the ability of imagined odors to elicit the same effects as perceived odors on taste perception. The tastant used was sucrose, and the two odorants were strawberry and ham. In the first experiment, participants either smelled or imagined one of two odors during taste detection tasks (between-subject design), whereas in the second one, subjects completed both the odor imagery and perception conditions with taste detection tasks (within-subject design). The effect was odorant-specific: detection of sucrose was significantly better when subjects smelled strawberry than when they smelled ham. Furthermore, imagined odors influenced taste perception in the same way as did perceived odors. We concluded that the odor-specific effect on taste perception is an authentic perceptual phenomenon. Our results also support the notion that odor-induced changes in taste perception are mediated centrally. Finally, our findings are in agreement with reports supporting the existence of odor imagery.  相似文献   

20.
The effect of structural features of six pairs of enantiomers of cannabimimetic compounds on their chromatographic resolution on an amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase was studied using various compositions of n-hexane with 2-propanol and ethanol. Structural analysis by molecular mechanics was also performed to verify that the 3D conformation within this family of compounds was preserved with substitution. The homologous enantiomeric pairs showed better resolution when there was an additional OH group near the chiral centers (position 7 on the cannabinoid structure). Better resolution was observed also for the enantiomeric pair that had the smaller alkyl side chain. These differences indicated that the additional OH group contributed to a better discrimination of the enantiomers by the chiral sites of the stationary phase and that the bulkier alkyl side chain reduced it. The chromatographic resolution of two enantiomeric pairs of nonclassical cannabinoids HU-249 and HU-250, HU-255 and HU-256, was compared both in ethanol and 2-propanol. Both enantiomeric pairs showed relatively high resolution and selectivity, but the rigid benzofuran analogs (HU-249 and HU-250) exhibited better resolution using 2-propanol, in spite of the flexibility of the open chain analog (HU-255 and HU-256) and its additional OH group. The elution order of all the cannabinoids was (+)/(?) using both solvents. Unusual solvent effects were displayed by one enantiomeric pair, Δ6-THC, which was resolved easily using 2-propanol, but whose elution order reversed with 1% ethanol in the mobile phase. Partial separation was obtained at 5% ethanol [elution order (+)/(?)] and full separation was obtained at 0.5% ethanol [elution order (?)/(+)]. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号