首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.

Background

MicroRNAs are a family of 19- to 25-nucleotides noncoding small RNAs that primarily function as gene regulators. Aberrant microRNA expression has been described for several human malignancies, and this new class of small regulatory RNAs has both oncogenic and tumor suppressor functions. Despite this knowledge, there is little information regarding microRNAs in plasma especially because microRNAs in plasma, if exist, were thought to be digested by RNase. Recent studies, however, have revealed that microRNAs exist and escape digestion in plasma.

Methodology/Principal Findings

We performed microRNA microaray to obtain insight into microRNA deregulation in the plasma of a leukemia patient. We have revealed that microRNA-638 (miR-638) is stably present in human plasmas, and microRNA-92a (miR-92a) dramatically decreased in the plasmas of acute leukemia patients. Especially, the ratio of miR-92a/miR-638 in plasma was very useful for distinguishing leukemia patients from healthy body.

Conclusions/Significance

The ratio of miR-92a/miR-638 in plasma has strong potential for clinical application as a novel biomarker for detection of leukemia.  相似文献   

3.

Aims

To demonstrate that pregnancy-related complications are associated with alterations in cardiovascular and cerebrovascular microRNA expression. Gene expression of 32 microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-33a-5p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-208a-3p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p) was assessed in placental tissues, compared between groups (35 gestational hypertension, 80 preeclampsia, 35 intrauterine growth restriction and 20 normal pregnancies) and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. Initially, selection and validation of endogenous controls for microRNA expression studies in placental tissues affected by pregnancy-related complications have been carried out.

Results

The expression profile of microRNAs was different between pregnancy-related complications and controls. The up-regulation of miR-499a-5p was a common phenomenon shared between gestational hypertension, preeclampsia, and intrauterine growth restriction. Preeclamptic pregnancies delivering after 34 weeks of gestation and IUGR with abnormal values of flow rate in the umbilical artery demonstrated up-regulation of miR-1-3b. Preeclampsia and IUGR requiring termination of gestation before 34 weeks of gestation were associated with down-regulation of miR-26a-5p, miR-103a-3p and miR-145-5p. On the other hand, some of microRNAs (miR-16-5p, miR-100-5p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-143-3p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-342-3p, and miR-574-3p) were only down-regulated or showed a trend to down-regulation just in intrauterine growth restriction pregnancies requiring the delivery before 34 weeks of gestation.

Conclusion

Epigenetic changes induced by pregnancy-related complications in placental tissue may cause later onset of cardiovascular and cerebrovascular diseases in offspring.  相似文献   

4.
5.

Introduction

MicroRNAs are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. It is known that aberrant microRNA expression can play important roles in cancer, but the role of microRNAs in autoimmune diseases is only beginning to emerge. In this study, the expression of selected microRNAs is examined in rheumatoid arthritis.

Methods

Total RNA was isolated from peripheral blood mononuclear cells obtained from patients with rheumatoid arthritis, and healthy and disease control individuals, and the expression of miR-146a, miR-155, miR-132, miR-16, and microRNA let-7a was analyzed using quantitative real-time PCR.

Results

Rheumatoid arthritis peripheral blood mononuclear cells exhibited between 1.8-fold and 2.6-fold increases in miR-146a, miR-155, miR-132, and miR-16 expression, whereas let-7a expression was not significantly different compared with healthy control individuals. In addition, two targets of miR-146a, namely tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor-associated kinase 1 (IRAK-1), were similarly expressed between rheumatoid arthritis patients and control individuals, despite increased expression of miR-146a in patients with rheumatoid arthritis. Repression of TRAF6 and/or IRAK-1 in THP-1 cells resulted in up to an 86% reduction in tumor necrosis factor-α production, implicating that normal miR-146a function is critical for the regulation of tumor necrosis factor-α production.

Conclusions

Recent studies have shown that synovial tissue and synovial fibroblasts from patients with rheumatoid arthritis exhibit increased expression of certain microRNAs. Our data thus demonstrate that microRNA expression in rheumatoid arthritis peripheral blood mononuclear cells mimics that of synovial tissue/fibroblasts. The increased microRNA expression in rheumatoid arthritis patients is potentially useful as a marker for disease diagnosis, progression, or treatment efficacy, but this will require confirmation using a large and well defined cohort. Our data also suggest a possible mechanism contributing to rheumatoid arthritis pathogenesis, whereby miR-146a expression is increased but unable to properly function, leading to prolonged tumor necrosis factor-α production in patients with rheumatoid arthritis.  相似文献   

6.

Background

To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders.

Methods

We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K+ current.

Results

H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking.

Conclusions

Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.  相似文献   

7.

Aims

Multicellular organisms maintain vital functions through intercellular communication. Release of extracellular vesicles that carry signals to even distant target organs is one way of accomplishing this communication. MicroRNAs can also be secreted from the cells in exosomes and act as paracrine signalling molecules. In addition, microRNAs have been implicated in the pathogenesis of a large number of diseases, including cardiovascular diseases, and are considered as promising candidate biomarkers due to their relative stability and easy quantification from clinical samples. Pericardial fluid contains hormones secreted by the heart and is known to reflect the cardiac function. In this study, we sought to investigate whether pericardial fluid contains microRNAs and if so, whether they could be used to distinguish between different cardiovascular pathologies and disease stages.

Methods and Results

Pericardial fluid was collected from heart failure patients during open-heart surgery. MicroRNA profiles of altogether 51 patients were measured by quantitative real-time PCR (qPCR) using Exiqon human panels I and II. On the average, 256 microRNAs were detected per sample, and 70 microRNAs out of 742 profiled microRNAs were detected in every sample. The five most abundant microRNAs in pericardial fluid were miR-21-5p, miR-451a, miR-125b-5p, let-7b-5p and miR-16-5p. No specific signatures for cardiovascular pathologies or clinically assessed heart failure stages could be detected from the profiles and, overall, microRNA profiles of the samples were found to be very similar despite the heterogeneity in the study population.

Conclusion

Measured microRNA profiles did not separate the samples according to the clinical features of the patients. However, several previously identified heart failure marker microRNAs were detected. The pericardial fluid microRNA profile appeared to be a result of an active and selective secretory process indicating that microRNAs may act as paracrine signalling factors by mediating the local crosstalk between cardiac cells.  相似文献   

8.

Background

APP expression misregulation can cause genetic Alzheimer's disease (AD). Recent evidences support the hypothesis that polymorphisms located in microRNA (miRNA) target sites could influence the risk of developing neurodegenerative disorders such as Parkinson's disease (PD) and frontotemporal dementia. Recently, a number of single nucleotide polymorphisms (SNPs) located in the 3'UTR of APP have been found in AD patients with family history of dementia. Because miRNAs have previously been implicated in APP expression regulation, we set out to determine whether these polymorphisms could affect miRNA function and therefore APP levels.

Results

Bioinformatics analysis identified twelve putative miRNA bindings sites located in or near the APP 3'UTR variants T117C, A454G and A833C. Among those candidates, seven miRNAs, including miR-20a, miR-17, miR-147, miR-655, miR-323-3p, miR-644, and miR-153 could regulate APP expression in vitro and under physiological conditions in cells. Using luciferase-based assays, we could show that the T117C variant inhibited miR-147 binding, whereas the A454G variant increased miR-20a binding, consequently having opposite effects on APP expression.

Conclusions

Taken together, our results provide proof-of-principle that APP 3'UTR polymorphisms could affect AD risk through modulation of APP expression regulation, and set the stage for further association studies in genetic and sporadic AD.  相似文献   

9.
10.

Objective

The objective of the study was to evaluate risk assessment for gestational hypertension based on the profile of circulating placental specific C19MC microRNAs in early pregnancy.

Study design

The prospective longitudinal cohort study of women enrolled at first trimester screening at 10 to 13 weeks was carried out (n = 267). Relative quantification of placental specific C19MC microRNAs (miR-516-5p, miR-517*, miR-518b, miR-520a*, miR-520h, miR-525 and miR-526a) was determined in 28 normal pregnancies and 18 pregnancies which developed gestational hypertension using real-time PCR and a comparative Ct method relative to synthetic C. elegans microRNA (cel-miR-39).

Results

Increased extracellular C19MC microRNA plasmatic levels (miR-516-5p, p<0.001; miR-517*, p = 0.007; miR-520h, p<0.001; miR-518b, p = 0.002) were detected in patients destined to develop gestational hypertension. MiR-520h had the best predictive performance with a PPV of 84.6% at a 7.1% false positive rate. The combination of miR-520h and miR-518b was able to predict 82.6% of women at the same false positive rate. The overall predictive capacity of single miR-518b (73.3% at 14.3% FPR), miR-516-5p (70.6% at 17.9% FPR) and miR-517* (57.9% at 28.6% FPR) biomarkers was lower.

Conclusion

The study brought interesting finding that the up-regulation of miR-516-5p, miR-517*, miR-520h and miR-518b is associated with a risk of later development of gestational hypertension. First trimester screening of extracellular miR-520h alone or in combination with miR-518b identified a significant proportion of women with subsequent gestational hypertension.  相似文献   

11.

Objective

To propose and verify a hypothesis that miR-17-5p knockdown may mitigate atherosclerotic lesions using atherosclerotic ApoE?/? mice as serum microRNA-17-5p (miR-17-5p) is elevated in patients with atherosclerosis.

Results

The level of miR-17-5p was higher while the level of very low density lipoprotein receptor (VLDLR), a predicted target of miR-17-5p, was lower in the peripheral blood lymphocytes (PBLs) of atherosclerosis patients as compared with control PBLs. ApoE?/? mice fed with a high-cholesterol diet displayed marked atherosclerotic vascular lesions, which were ameliorated after treatment with antagomiR-17-5p. Moreover, the decreased VLDLR in atherosclerotic mice was partly restored when miR-17-5p was antagonized. Further, luciferase assay confirmed VLDLR as a direct target of miR-17-5p in vascular smooth muscle cells (VSMCs). In addition, the elevated expression of proprotein convertase subtilisin kexin 9 (PCSK9), a secreted protease that binds to and promotes VLDLR degradation, in the atherosclerotic mice was suppressed by antagomiR-17-5p.

Conclusions

A novel interaction between miR-17-5p and VLDLR is revealed and suggests that miR-17-5p may be a potential therapeutic target for AS.
  相似文献   

12.
13.
14.

Rationale

Sepsis is a common cause of death in the intensive care unit with mortality up to 70% when accompanied by multiple organ dysfunction. Rapid diagnosis and the institution of appropriate antibiotic therapy and pressor support are therefore critical for survival. MicroRNAs are small non-coding RNAs that play an important role in the regulation of numerous cellular processes, including inflammation and immunity.

Objectives

We hypothesized changes in expression of microRNAs during sepsis may be of diagnostic value in the intensive care unit (ICU).

Methods

Massively parallel sequencing of microRNAs was utilised for screening microRNA candidates. Putative microRNAs were validated using quantitative real-time PCR (qRT-PCR). This study includes data from both a training cohort (UK) and an independent validation cohort (Sweden). A linear discriminant statistical model was employed to construct a diagnostic microRNA signature.

Results

A panel of known and novel microRNAs were detectable in the blood of patients with sepsis. After qRT-PCR validation, microRNA miR-150 and miR-4772-5p-iso were able to discriminate between patients who have systemic inflammatory response syndrome and patients with sepsis. This finding was also validated in independent cohort with an average diagnostic accuracy of 86%. Fractionating the cellular components of blood reveals miR-4772-5p-iso is expressed differentially in monocytes. Functional experiments using primary human monocytes demonstrate that it expressed in response to TLR ligation.

Conclusions

Taken together, these data provide a novel microRNA signature of sepsis that should allow rapid point-of-care diagnostic assessment of patients on ICU and also provide greater insight into the pathobiology of this severe disease.  相似文献   

15.

Introduction

Fibromyalgia (FM) is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases.The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue.

Methods

The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain) were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ). Levels of fatigue (FIQ fatigue) were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF).

Results

Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p.The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10) and with FIQ fatigue (r=0.687, p=0.028, n=10).

Conclusion

To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM.We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.  相似文献   

16.
17.

Background

Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice.

Methodology/Principal Findings

Bilateral renal ischemia was induced in C57Bl/6 mice (n = 10 per group) by clamping the renal pedicle for 27 min. Ischemia-reperfusion caused highly reproducible, progressive, concordant elevation of miR-714, miR-1188, miR-1897-3p, miR-877*, and miR-1224 in plasma and kidneys at 3, 6 and 24 hours after acute kidney injury compared to the sham-operated mice (n = 5). These dynamics correlated with histologic findings of kidney injury and with a conventional plasma marker of renal dysfunction (creatinine). Pathway analysis revealed close association between miR-1897-3p and Nucks1 gene expression, which putative downstream targets include genes linked to renal injury, inflammation and apoptosis.

Conclusions/Significance

Systematic profiling of renal and plasma microRNAs in the early stages of experimental AKI provides the first step in advancing circulating microRNAs to the level of promising novel biomarkers.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号