首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In extracts of FL cells that were infected with Sindbis virus or treated with heat-shock stress, dsRNA-dependent phosphorylation of 77K protein was markedly increased. The 77K phosphoprotein was indistinguishable from the autophosphorylated and activated form of interferon (IFN)-induced dsRNA-dependent protein kinase (PK-I) by two-dimensional gel electrophoresis, and was immunologically related to P68 (Galabru, J. and Hovanessian, A., J. Biol. Chem. 262, 15538 (1987], the HeLa cell counterpart of PK-I. Immunoblotting experiments using monoclonal antibody against PK-I revealed that control cell extracts contained a substantial amount of PK-I protein, although they showed no measurable PK-I activity even when dsRNA was added. The amount of PK-I protein did not increase during a transient dsRNA-dependent enhancement of PK-I activity caused by Sindbis virus infection and heat-shock stress. This implies that the conversion of PK-I protein from a dsRNA-unresponsive form to a responsive form may be important in the regulation of PK-I activity. A similar mode of PK-I regulatory mechanism was operative in the early stages of IFN treatment, although after a prolonged treatment a net synthesis of the PK-I protein did take place.  相似文献   

2.
We have investigated the interaction of VAI RNA with the interferon-induced, double-stranded (ds) RNA-activated protein kinase, P68, both of which regulate protein synthesis in adenovirus-infected cells. Previous work has shown that during infection by the VAI RNA-negative mutant, dl331, both viral and cellular protein synthesis are inhibited due to phosphorylation of the alpha-subunit of the eukaryotic initiation factor, eIF-2, by the P68 protein kinase. Utilizing monoclonal antibodies specific for P68, we demonstrated that the physical levels of P68 in dl331-infected, wild-type Ad2-infected and uninfected cells were all comparable suggesting that the elevated kinase activity detected during mutant infection was not due to increased P68 synthesis. To examine the basis of the increased activity of P68, the protein kinase was purified from infected-cell extracts using the monoclonal antibody. We found that P68 was heavily autophosphorylated during dl331 infection but not during wild-type or mock infection. The extent of autophosphorylation correlated with elevated P68 activity and the loss of the dsRNA requirements to phosphorylate the exogenous substrates, eIF-1 alpha and histones. We also analyzed VAI RNA function in vitro and present evidence that purified VAI RNA can block the autophosphorylation of P68 in the ribosomal salt wash fraction of interferon-treated cells. Finally we suggest VAI RNA functions through a direct interaction with the P68 protein kinase, since we demonstrated that VAI RNA forms a complex with P68 both in vitro and in vivo.  相似文献   

3.
The interferon-inducible, double-stranded RNA (dsRNA)-dependent protein kinase which phosphorylates an endogenous HeLa 69 kilodalton polypeptide or exogenous initiation factor eIF2 was inhibited during vaccinia virus infection. High interferon doses (20,000 reference units per ml) did not prevent this inhibition. The inhibition required protein synthesis but not viral DNA synthesis during infection, suggesting that an early vaccinia virus gene function was responsible. An active dsRNA-dependent protein kinase could be recovered from an inactive extract by purification on polyinosinate X polycytidylate-cellulose. An inhibitor of the protein kinase, therefore, must be present in the inactive extract. Similar results have been obtained with mouse L929 cells. At early time points of infection, the protein kinase in cell extracts required exogenous dsRNA for activity. This argues against endogenous viral dsRNA and activation of the kinase in the intact cell. At late time points of infection (when vaccinia virus dsRNA was almost certainly formed), the inhibitor of the kinase is present. Accordingly, it seems unlikely that the kinase played any role in the interferon-mediated inhibition of virus growth observed in these cells under these particular conditions.  相似文献   

4.
Cultured mouse 3T3-F442A and 3T3-C2 fibroblasts exhibit a transient double-stranded RNA (dsRNA)-dependent phosphorylation of a 67,000-dalton protein (67K) without prior treatment with interferon (IFN). This phosphoprotein is similar but not identical to the dsRNA-dependent eukaryotic initiation factor-2 (eIF-2) alpha protein kinase (dsI), which regulates protein synthesis in rabbit reticulocytes. We have studied the relationship between cell growth and phosphorylation of the 67K protein (designated 3T3-dsRNA-dependent eIF-2 alpha kinase). A low level of dsRNA-dependent phosphorylation of 3T3-dsI was detectable in extracts prepared from cells not treated with IFN and grown at a low cell density. The phosphorylation of dsI and the phosphorylation of a 38K protein identified as the alpha-subunit (38K) of 3T3-eIF-2 (eIF-2 alpha) occurred concomitantly; the levels of these phosphorylations confluent and thereafter decreased markedly. Treatment of cells with IFN at all stages of growth resulted in an increase in phosphorylation of dsI. 3T3-F442A and 3T3-C2 fibroblasts were found to produce and secrete IFN at levels sufficient to induce an elevated dsI activity.  相似文献   

5.
Previous studies have shown that the antiviral response induced by interferon in murine cells could be degraded after a heat shock. Here we have confirmed that a similar effect occurs also in interferon-treated human HeLa cells subjected to a heat shock. In addition, we have investigated the fate of the interferon-induced, double-stranded RNA-dependent protein kinase in heat-shocked cells. This protein kinase is a Mr 68,000 protein (p68 kinase) which, when autophosphorylated, catalyzes phosphorylation of the protein synthesis eukaryotic initiation factor-2, thus mediating inhibition of protein synthesis. After heat shock of interferon-treated HeLa cells, the double-stranded RNA-dependent autophosphorylation of p68 kinase in cytoplasmic extracts is greatly reduced whereas the phosphorylation of other cellular proteins is not affected. In vivo, autophosphorylation of p68 kinase is also reduced in heat-shocked cells whereas there is no apparent effect on the phosphorylation state of other proteins. In such cells, the interferon-mediated antiviral response becomes modified according to the virus challenge, i.e. these cells remain resistant to vesicular stomatitis virus but become partially sensitive to encephalomyocarditis virus (EMCV) infection. The reduction in the activity of p68 kinase is due to its reduced nonionic detergent solubility occurring during the heat shock period. The resultant reduced detergent extractibility of p68 kinase is dependent on the intensity of the thermal stress. In contrast to the effect after a heat shock, arsenite treatment of interferon-treated HeLa cells induces heat shock proteins, but neither modifies the antiviral response nor affects the extractibility of p68 kinase. These results indicate that the degradation of the anti-EMCV response and reduced p68 kinase activity occur in response to heat treatment independently of the induction of heat shock proteins. The role of p68 kinase in the mechanism of the antiviral response against EMCV and vesicular stomatitis virus is discussed.  相似文献   

6.
The avian c-fps and mammalian c-fes proto-oncogenes are cognate cellular sequences. Antiserum raised against the P140gag-fps transforming protein of Fujinami avian sarcoma virus specifically recognized a 92,000-Mr protein in human and mouse hematopoietic cells which was closely related in structure to Snyder-Theilen feline sarcoma virus P87gag-fes. This polypeptide was apparently the product of the human c-fes gene and was therefore designated p92c-fes. Human p92c-fes was associated with a tyrosine-specific protein kinase activity in vitro and was capable of both autophosphorylation and phosphorylation of enolase as an exogenous protein substrate. The synthesis of human and mouse p92c-fes was largely, though not entirely, confined to myeloid cells. p92c-fes was expressed to relatively high levels in a multipotential murine myeloid cell line, in more mature human and mouse granulocyte-macrophage progenitors, and in differentiated macrophage like cells as well as in the mononuclear fraction of normal and leukemic human peripheral blood. p92c-fes was not found in erythroid cells, with the exception of a human erythroleukemia line which retains the capacity to differentiate into macrophage like cells. These results suggest a normal role for the p92c-fes tyrosine kinase in hematopoiesis, particularly in granulocyte-macrophage differentiation. In addition, a distinct 94,000-Mr polypeptide, antigenically related to p92c-fes, was identified in a number of hematopoietic and nonhematopoietic human and mouse cells and was also found to be associated with a tyrosine-specific protein kinase activity.  相似文献   

7.
The interferon induced double-stranded-RNA-dependent eIF-2 alpha kinase has an established role in mediating part of interferons anti-viral effects. Several studies have suggested that it may have additional functions in cells not infected with virus. The mechanism of activation of the kinase and the consequences of its activity in uninfected cells remain to be determined. Our previous results have indicated that the activation (phosphorylation) of this kinase may be an important regulatory signal to the arrest of growth of mouse 3T3-F442A fibroblasts and their subsequent differentiation to adipocytes. We have found that the phosphorylation of the kinase occurred in vivo in the absence of viral infection and in vitro without the addition of dsRNA. We demonstrate here that total cytoplasmic RNA from 3T3-F442A cells contains a regulatory RNA(s) capable of activating dsRNA-dependent eIF-2 alpha kinase. Fractionation of the cytoplasmic RNA by oligo(dT)-cellulose indicated that the regulatory RNA eluted with the poly(A)-rich RNA fraction. It bound tightly to the dsRNA-dependent eIF-2 alpha kinase and was immune-precipitated with its antibodies as a complex of regulatory RNA and dsRNA-dependent eIF-2 alpha kinase. The regulatory RNA activity was further purified by phenol extraction of immune precipitates containing this complex. These findings indicated that the regulatory RNA forms a specific complex with the dsRNA-dependent eIF-2 alpha kinase. The activity of the regulatory RNA was sensitive to the dsRNA-specific RNase VI but not to proteinase K, DNase I or ssRNA-specific RNase T1. The activation of the dsRNA-dependent eIF-2 alpha kinase by regulatory RNA was prevented by addition of a high concentration of poly(I).poly(C). The regulatory RNA was also shown to activate partially purified dsRNA-dependent eIF-2 alpha kinase prepared from rabbit reticulocyte lysates and to inhibit protein synthesis in reticulocyte lysates. Our findings, that cellular RNAs can specifically activate the dsRNA-dependent eIF-2 alpha kinase, are consistent with a physiological role for the dsRNA-dependent eIF-2 alpha kinase and interferon during cell growth and differentiation. The relationship of the regulatory RNA activity to growth and differentiation of 3T3-F442A cells is discussed.  相似文献   

8.
Antiserum raised against recombinant Xenopus ribosomal protein S6 kinase (rsk) was used to identify a 90,000-Mr ribosomal S6 kinase, pp90rsk, in chicken embryo fibroblasts. Adding serum to cells stimulated the phosphorylation of pp90rsk on serine and threonine residues and increased the activity of S6 kinase measured in immune complex assays. Xenopus S6 kinase II and chicken embryo fibroblast pp90rsk had nearly identical phosphopeptide maps.  相似文献   

9.
The double-stranded (ds) RNA-activated protein kinase from human cells is a 68 kd protein (p68 kinase) induced by interferon. On activation by dsRNA in the presence of ATP, the kinase becomes autophosphorylated and can catalyze the phosphorylation of the alpha subunit of eIF2, which leads to an inhibition of the initiation of protein synthesis. Here we report the molecular cloning and characterization of several related cDNAs from which can be deduced the full-length p68 kinase sequence. All of the cDNAs identify a 2.5 kb RNA that is strongly induced by interferon. The deduced amino acid sequence of the p68 kinase predicts a protein of 550 amino acids containing all of the conserved domains specific for members of the protein kinase family, including the catalytic domain characteristic of serine/threonine kinases. In vitro translation of a reconstructed full-length p68 kinase cDNA yields a protein of 68 kd that binds dsRNA, is recognized by a monoclonal antibody raised against the native p68 kinase, and is autophosphorylated.  相似文献   

10.
Treatment of mouse L cells with mouse IFN gamma induced a cytoplasmic Ca-dependent protein kinase, which highly phosphorylated cellular enzymes such as phosphodiesterase and RNase in vitro. The kinase partially purified from IFN gamma-treated cells (100 units/ml, 12 h at 37 degrees C) was different from IFN-induced dsRNA-dependent protein kinase since it was dsRNA independent. The kinase may have played an important role in mediating IFN-induced biological effects, since cellular enzymes were found to alter enzyme activity after phosphorylation by the kinase in vitro.  相似文献   

11.
The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells. The spectrum of RNAs that interact with the La antigen includes species which also bind to the interferon-inducible protein kinase PKR. We have investigated whether the La antigen can regulate the activity of PKR and have observed that both the autophosphorylation of the protein kinase that accompanies its activation by dsRNA and the dsRNA-dependent phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF-2 by PKR are inhibited in the presence of recombinant La antigen. This inhibition is partially relieved at higher concentrations of dsRNA. Once activated by dsRNA the protein kinase activity of PKR is insensitive to the La antigen. We have demonstrated by a filter binding assay that La is a dsRNA binding protein. Furthermore, when recombinant La is incubated with a 900 bp synthetic dsRNA or with naturally occurring reovirus dsRNA it converts these substrates to single-stranded forms. We conclude that the La antigen inhibits the dsRNA-dependent activation of PKR by binding and unwinding dsRNA and that it may therefore play a role in the regulation of this protein kinase in interferon-treated or virus-infected cells.  相似文献   

12.
Autophosphorylation of the protein kinase dependent on double-stranded RNA   总被引:45,自引:0,他引:45  
The double-stranded RNA (dsRNA)-dependent protein kinase (p68 kinase) from interferon-treated human cell is a Mr 68,000 protein induced by interferon. By the use of a specific monoclonal antibody, we have been able to study the two distinct protein kinase activities characteristic of purified p68 kinase. The first activity is functional for endogenous phosphorylation of the enzyme (p68 kinase), whereas the second one is responsible for the phosphorylation of exogenous substrates such as eukaryotic initiation factor 2 and histone. When activated by dsRNA in the presence of Mn2+ and ATP, p68 kinase is autophosphorylated and is then capable of catalyzing phosphorylation of histone in the absence of dsRNA. Whereas binding of 8-azido-[alpha-32P] ATP (8-N3ATP) to p68 kinase is dependent on both dsRNA and Mn2+, phosphorylated p68 kinase binds 8-N3ATP independent of dsRNA. This is consistent with a dsRNA requirement for the autophosphorylation of p68 kinase, but not for the phosphorylation of exogenous substrates. p68 kinase is mainly associated with the ribosomal pellet. It could be recovered efficiently by a buffer containing both high salt and a nonionic detergent. Synthesis of p68 kinase is induced several-fold by interferon in different types of human cells. Partial proteolysis of [35S]methionine and an 8-N3ATP-labeled p68 kinase preparation by Staphylococcus aureus V8 protease indicated the presence of a major Mr 48,000 polypeptide (p48) with a specific ATP-binding site. p48 probably contains the catalytic unit of p68 kinase and is analogous to a similar protein which we have previously described as a distinct protein present in a complexed form with p68 kinase. We now believe that the presence of p48 in previously purified kinase preparations was due to partial degradation of p68 kinase.  相似文献   

13.
The double-stranded RNA (dsRNA)-dependent protein kinase which catalyzes the phosphorylation of ribosome-associated protein P1 and the alpha subunit of eukaryotic protein synthesis initiation factor 2 (eIF-2) was purified and characterized from mouse fibroblast L929 cells treated with either natural or recombinant interferon and from untreated cells. The dsRNA-dependent P1/eIF-2 alpha kinase was purified at least 1,500-fold from interferon-treated cells; the kinase activity that catalyzed the phosphorylation of eIF-2 alpha copurified with protein P1. The yield of P1/eIF-2 alpha protein kinase activity obtained following purification from cells treated with interferon was about 5-10 times greater than the yield from an equivalent number of untreated cells. The purified protein kinase remained dsRNA dependent. When P1 kinase was activated by dsRNA, a major phosphopeptide designated Xds was phosphorylated; Xds was not phosphorylated from P1 which had not been activated by dsRNA. The apparent native molecular weight of the purified mouse L929 dsRNA-dependent kinase as determined by sedimentation analysis was about 62,000, comparable to the molecular weight of 67,000 determined for denatured L929 phosphoprotein P1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified protein kinase was highly selective for the alpha subunit of protein synthesis initiation factor eIF-2 and endogenous protein P1. Kinase activity was dependent upon Mg2+, and the Km for ATP was determined to be 5 X 10(-6) M. Histones (H1, H2A-B, H3, and H4) and protein synthesis initiation factors other than eIF-2 (eIF-3, eIF-4A, eIF-4B, and eIF-5) were not substrates or were very poor substrates for the purified dsRNA-dependent protein kinase. N-Ethylmaleimide, ethylenediaminetetraacetic acid, AMP, pyrophosphate, spermine, spermidine, and high concentrations of potassium inhibited both P1 and eIF-2 alpha phosphorylation by the purified kinase, whereas ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and phenanthroline did not significantly affect the phosphorylation of either protein P1 or eIF-2 alpha.  相似文献   

14.
The genome of the human delta hepatitis agent is a circular, highly structured single-stranded RNA lacking regular runs of RNA-RNA duplex longer than 15 bp. We have tested the ability of delta agent RNA to participate in reactions with a protein containing a motif which confers the ability to bind double-stranded RNA (dsRNA). Surprisingly, highly purified delta agent RNA preparations from which all traces of contaminating dsRNA have been removed activate PKR, the dsRNA-dependent protein kinase activity of mammalian cells (also known as DAI, P1-eIF-2, and p68 kinase). This behavior is in marked contrast to the interaction of PKR with a number of other highly structured viral single-stranded RNAs, which inhibit, rather than stimulate, activation of this kinase. PKR activation leads to inhibition of protein synthesis in the rabbit reticulocyte lysate system. Paradoxically, delta RNA failed to elicit the expected PKR-mediated inhibition of cell-free translation. Instead, delta RNA interfered with PKR activation and the translational block induced by dsRNA. We conclude that the interaction of PKR and delta agent RNA may represent a new category of protein-RNA interactions involving the dsRNA binding motif.  相似文献   

15.
In contrast to other tissues (e.g. brain, heart), no cAMP dependent protein kinase activity and little cAMP-binding activity could be detected in crude homogenates of purified human PMN leucocytes. This was due to the presence of an inhibitor of cAMP binding and protein kinase activity in PMN leucocytes. Since the inhibitor was entirely segregated in PMN lysosomes (rich in β-glucuronidase and acid phosphatase), lysosomefree supernatants yielded cAMP-dependent protein kinase (> 5-fold stimulation with 5 μM cAMP) and considerable cAMP binding activity. The inhibitor was not dialyzable, and unlike the usual protein kinase modulators, was heat-labile. Preparations of beef-heart protein kinase, treated with the PMN inhibitor, lost cAMP-binding and protein kinase activities simultaneously. The presence of this lysosomal inhibitor may invalidate studies of cAMP binding and protein kinase activities in crude homogenates prepared from lysosome-rich tissues.  相似文献   

16.
The protein kinase from human cells dependent on double-stranded (ds) RNA is a 68-kDa protein (p68 kinase), the level of which is enhanced significantly in cells treated with interferon. When activated by low concentrations of dsRNA, the p68 kinase becomes phosphorylated and thereby catalyzes the phosphorylation of the protein-synthesis initiation factor, eIF2. Here, we have purified the p68 kinase to homogeneity using a specific monoclonal antibody to investigate its capacity to bind dsRNA, poly(I).poly(C). Our study suggest that p68 kinase has high- and low-affinity binding sites: the high-affinity binding site is responsible for the activation and the low-affinity binding site for the inhibition of kinase activity. This is in accord with the fact that autophosphorylation of p68 kinase occurs at low concentrations of dsRNA whereas high concentrations of dsRNA inhibit its autophosphorylation. We have also investigated the binding of adenoviral VAI RNA to the purified p68 kinase and have found that the affinity of this binding is lower than that of poly(I).poly(C). We show that VAI RNA can activate or inhibit autophosphorylation of p68 kinase in a dose-dependent manner, i.e. activation at less than or equal to 1 microgram/ml or inhibition at greater than 1 microgram/ml of VAI RNA. In spite of its lower affinity of binding, VAI RNA cannot be displaced by poly(I).poly(C) or reovirus dsRNA. These data confirm our previous results to illustrate that VAI RNA can bind p68 kinase and cause its inactivation irreversably.  相似文献   

17.
IL-1 increases phosphorylation of the small heat shock protein (hsp27) in intact cells. This change was also shown both by introducing [gamma-32P]ATP and Mg2+ into MRC-5 fibroblasts permeabilized by LPC after stimulation by IL-1, and by adding the labeled ATP and Mg2+ to cell extracts. Hsp27 phosphorylated in permeabilized cells or cell extracts was shown by 2D electrophoresis to comprise the three forms seen in metabolically labeled cells, suggesting that the physiologically relevant kinase was acting on the substrate in vitro. Mixing of extracts of resting and IL-1-stimulated cells revealed that stimulated cells contained increased levels of kinase activity that phosphorylated substrate hsp27 in the extracts of resting cells. Existence of the activated kinase was confirmed by showing that extracts of IL-1-stimulated cells phosphorylated purified homogeneous hsp27 at a greater rate than those of resting cells. The kinase activity was maximal in cells stimulated with IL-1 for 5 to 10 min, but had declined to the resting level after stimulation for 40 min. Membrane and cytosolic fractions prepared from cell homogenates both contained hsp27 kinase, but the IL-1-dependent increase was associated with the cytosolic fraction. TNF-stimulated cells also contained increased hsp27 kinase activity in the cytosol. The evidence suggests that the cytosolic hsp27 kinase is responsible for the changes in hsp27 phosphorylation induced by the cytokines in intact cells.  相似文献   

18.
The P68 protein kinase is a serine/threonine kinase induced by interferon treatment and activated by double-stranded RNAs (dsRNAs). Once activated, the kinase phosphorylates its natural substrate, the alpha subunit of eukaryotic initiation factor 2 (eIF-2) leading to potential limitations in functional eIF-2 and decreases in protein synthesis initiation. We have recently purified from influenza virus-infected cells a P68 kinase inhibitor, found to be a 58-kDa cellular protein. We have now investigated the mechanisms by which the 58-kDa inhibitor regulates P68 kinase activity and how the inhibitor itself is controlled. The 58-kDa inhibitor did not function by degrading or sequestering the dsRNA activator of P68 but could repress phosphorylation of eIF-2 alpha by an already activated protein kinase. Utilizing antibody prepared against a 58-kDa-specific peptide, we showed that the 58-kDa proteins from infected and uninfected cells were present in equivalent amounts. Although kinase inhibitory activity could not be detected in crude uninfected cell extracts, ammonium sulfate treatment unmasked this activity and allowed purification of the cellular inhibitor with identical chromatographic properties as that from influenza virus-infected cells. Finally, we have identified and partially purified a specific inhibitor of the 58-kDa protein which we refer to as an "anti-inhibitor." Based on these data, we present a model depicting the complex regulation of the interferon-induced protein kinase in eukaryotic cells.  相似文献   

19.
Antibodies against phosphotyrosine are a powerful tool with which to identify proteins phosphorylated on tyrosine residues, such as viral oncogene-encoded transforming proteins and their cellular protein substrates. Probed on human leukemia cell lines, phosphotyrosine antibodies recognized a 210,000-molecular-weight protein (p210) in K562 cells, a cell line derived from a Philadelphia (Ph)'-positive chronic myelogenous leukemia (CML), but recognized no protein in control Ph'-negative non-CML leukemia cells. The p210 protein was also recognized by antisera against v-abl-encoded polypeptides and displayed kinase activity, phosphorylating itself on tyrosine, in an immunocomplex kinase assay. These data are consistent with reported findings of the expression of a recombined bcr-abl gene in Ph'-positive CML cells, leading to the synthesis of an altered p210c-abl protein endowed with tyrosine kinase activity. Phosphotyrosine antibodies also detected the expression of the p210c-abl protein in fresh bone marrow cells harvested from CML patients in blast crisis. Besides the p210c-abl protein kinase, phosphotyrosine antibodies recognized other proteins with molecular weights of 110,000, 68,000, and 36,000 (p110, p68, and p36) in K562 cells. When [gamma-32P]ATP was added to nonionic detergent-extracted cells, these proteins became phosphorylated on tyrosine, as confirmed by phosphoamino acid analysis. A comparison with fibroblasts transformed by the v-abl, v-src, and v-fps oncogenes suggested the identity of the p36 protein with the common 36-kilodalton protein substrate of viral oncogene-encoded tyrosine kinases. Enhanced tyrosine phosphorylation of cellular proteins is thus a feature shared by cells transformed by v-abl and cells expressing a rearranged bcr-abl gene.  相似文献   

20.
The LSTRA murine thymoma cell line contains an elevated level of tyrosine protein kinase activity. When a microsomal preparation from these cells is incubated in vitro with ATP, the principal tyrosine protein kinase substrate is a 56,000-dalton protein, p56. We have found that an activity phosphorylating p56 on tyrosine can also be detected at low levels in microsomes from most, but not all, T lymphoma cell lines and from normal thymic tissue. Only 1 of 30 other lymphoma cell lines was found to contain an elevated level of such a tyrosine protein kinase. An activity that phosphorylated p56 in vitro was not detectable in the cells of other hematopoietic lineages. Anti-peptide antibodies reactive with the site of in vitro tyrosine phosphorylation of p56 allowed us to determine that the apparent abundance of the p56 polypeptide parallels closely the level of the tyrosine protein kinase activity in the cell lines examined. This suggests that p56 is the protein kinase responsible for the elevated tyrosine protein kinase activity in LSTRA cells and that the phosphorylation of p56 observed in vitro results from autophosphorylation. Two-dimensional tryptic peptide mapping revealed that p56 is distinct from the proteins encoded by the cellular genes which are the progenitors of retroviral tyrosine protein kinases, src, yes, fgr, abl, fes, and ros. Additionally, none of these proto-oncogenes was found to be transcribed at elevated levels in LSTRA or Thy19 cells. Like the catalytic subunit of the cyclic AMP-dependent protein kinase, the cellular and viral forms of p60src, and the protein phosphatase calcineurin B, p56 contains covalently bound fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号