首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium-regulated exocytosis is required for cell membrane resealing   总被引:15,自引:7,他引:8       下载免费PDF全文
《The Journal of cell biology》1995,131(6):1747-1758
Using confocal microscopy, we visualized exocytosis during membrane resealing in sea urchin eggs and embryos. Upon wounding by a laser beam, both eggs and embryos showed a rapid burst of localized Ca(2+)- regulated exocytosis. The rate of exocytosis was correlated quantitatively with successfully resealing. In embryos, whose activated surfaces must first dock vesicles before fusion, exocytosis and membrane resealing were inhibited by neurotoxins that selectively cleave the SNARE complex proteins, synaptobrevin, SNAP-25, and syntaxin. In eggs, whose cortical vesicles are already docked, vesicles could be reversibly undocked with externally applied stachyose. If cortical vesicles were undocked both exocytosis and plasma membrane resealing were completely inhibited. When cortical vesicles were transiently undocked, exposure to tetanus toxin and botulinum neurotoxin type C1 rendered them no longer competent for resealing, although botulinum neurotoxin type A was still ineffective. Cortical vesicles transiently undocked in the presence of tetanus toxin were subsequently fusion incompetent although to a large extent they retained their ability to redock when stachyose was diluted. We conclude that addition of internal membranes by exocytosis is required and that a SNARE-like complex plays differential roles in vesicle docking and fusion for the repair of disrupted plasma membrane.  相似文献   

2.
Requirement for annexin A1 in plasma membrane repair   总被引:1,自引:0,他引:1  
Ca2+ entering a cell through a torn or disrupted plasma membrane rapidly triggers a combination of homotypic and exocytotic membrane fusion events. These events serve to erect a reparative membrane patch and then anneal it to the defect site. Annexin A1 is a cytosolic protein that, when activated by micromolar Ca2+, binds to membrane phospholipids, promoting membrane aggregation and fusion. We demonstrate here that an annexin A1 function-blocking antibody, a small peptide competitor, and a dominant-negative annexin A1 mutant protein incapable of Ca2+ binding all inhibit resealing. Moreover, we show that, coincident with a resealing event, annexin A1 becomes concentrated at disruption sites. We propose that Ca2+ entering through a disruption locally induces annexin A1 binding to membranes, initiating emergency fusion events whenever and wherever required.  相似文献   

3.
Disruption of the cell plasma membrane is a commonplace occurrence in many mechanically challenging, biological environments. 'Resealing' is the emergency response required for cell survival. Resealing is triggered by Ca2+ entering through the disruption; this causes vesicles present in cytoplasm underlying the disruption site to fuse rapidly with one another (homotypically) and also with the adjacent plasma membrane (heterotypically/exocytotically). The large vesicular products of homotypic fusion are added as a reparative 'patch' across the disruption, when its resealing requires membrane replacement. The simultaneous activation of the local cytoskeleton supports these membrane fusion events. Resealing is clearly a complex and dynamic cell adaptation, and, as we emphasize here, may be an evolutionarily primitive one that arose shortly after the ancestral eukaryote lost its protective cell wall.  相似文献   

4.
5.
Black widow spider venom (BWSV) was applied to frog nerve-muscle preparations bathed in Ca2+-containing, or Ca2+-free, solutions and the neuromuscular junctions were studied by the freeze-fracture technique. When BWSV was applied for short periods (10-15 min) in the presence of Ca2+, numerous dimples (P face) or protuberances (E face) appeared on the presynaptive membrane and approximately 86% were located immediately adjacent to the double rows of large intramembrane particles that line the active zones. When BWSV was applied for 1 h in the presence of Ca2+, the nerve terminals were depleted of vesicles, few dimples or protuberances were seen, and the active zones were almost completely disorganized. The P face of the presynaptic membrane still contained large intramembrane particles. When muscles were soaked for 2-3 h in Ca2+-free solutions, the active zones became disorganized, and isolated remnants of the double rows of particles were found scattered over the P face of the presynaptic membrane. When BWSV was applied to these preparations, dimples or protuberances occurred almost exclusively alongside disorganized active zones or alongside dispersed fragments of the active zones. The loss of synaptic vesicles from terminals treated with BWSV probably occurs because BWSV interferes with the endocytosis of vesicle membrane. Therefore, we assume that the dimples or protuberances seen on these terminals identify the sites of exocytosis, and we conclude that exocytosis can occur mostly in the immediate vicinity of the large intramembrane particles. Extracellular Ca2+ seems to be required to maintain the grouping of the large particles into double rows at the active zones, but is not required for these particles to specify the sites of exocytosis.  相似文献   

6.
We previously found that a microdisruption of the plasma membrane evokes Ca(2+)-regulated exocytosis near the wound site, which is essential for membrane resealing. We demonstrate herein that repeated membrane disruption reveals long-term potentiation of Ca(2+)-regulated exocytosis in 3T3 fibroblasts, which is closely correlated with faster membrane resealing rates. This potentiation of exocytosis is cAMP-dependent protein kinase A dependent in the early stages (minutes), in the intermediate term (hours) requires protein synthesis, and for long term (24 h) depends on the activation of cAMP response element-binding protein (CREB). We were able to demonstrate that wounding cells activated CREB within 3.5 h. In all three phases, the increase in the amount of exocytosis was correlated with an increase in the rate of membrane resealing. However, a brief treatment with forskolin, which is effective for short-term potentiation and which could also activate CREB, was not sufficient to induce long-term potentiation of resealing. These results imply that long-term potentiation by CREB required activation by another, cAMP-independent pathway.  相似文献   

7.
Membrane resealing in mammalian cells after injury depends on Ca(2+)-dependent fusion of intracellular vesicles with the plasma membrane. When cells are wounded twice, the subsequent resealing is generally faster. Physiological and biochemical studies have shown the initiation of two different repair signaling pathways, which are termed facilitated and potentiated responses. The facilitated response is dependent on the generation and recruitment of new vesicles, whereas the potentiated response is not. Here, we report that the two responses can be differentially defined molecularly. Using recombinant fragments of synaptobrevin-2 and synaptotagmin C2 domains we were able to dissociate the molecular requirements of vesicle exocytosis for initial membrane resealing and the facilitated and potentiated responses. The initial resealing response was blocked by fragments of synaptobrevin-2 and the C2B domain of synaptotagmin VII. Both the facilitated and potentiated responses were also blocked by the C2B domain of synaptotagmin VII. Although the initial resealing response was not blocked by the C2AB domain of synaptotagmin I or the C2A domain of synaptotagmin VII, recruitment of new vesicles for the facilitated response was inhibited. We also used Ca2+ binding mutant studies to show that the effects of synaptotagmins on membrane resealing are Ca(2+)-dependent. The pattern of inhibition by synaptotagmin C2 fragments that we observed cannot be used to specify a vesicle compartment, such as lysosomes, in membrane repair.  相似文献   

8.
When a cell suffers a plasma membrane disruption, extracellular Ca2+ rapidly diffuses into its cytosol, triggering there local homotypic and exocytotic membrane fusion events. One role of this emergency exocytotic response is to promote cell survival: the internal membrane thus added to the plasma membrane acts as a reparative “patch.” Another, unexplored consequence of disruption-induced exocytosis is secretion. Many of the cells lining the gastrointestinal tract secrete mucus via a compound exocytotic mechanism, and these and other epithelial cell types lining the digestive tract are normally subject to plasma membrane disruption injury in vivo. Here we show that plasma membrane disruption triggers a potent mucus secretory response from stomach mucous cells wounded in vitro by shear stress or by laser irradiation. This disruption-induced secretory response is Ca2+ dependent, and coupled to cell resealing: disruption in the absence of Ca2+ does not trigger mucus release, but results instead in cell death due to failure to reseal. Ca2+-dependent, disruption-induced mucus secretion and resealing were also demonstrable in segments of intact rat large intestine. We propose that, in addition to promoting cell survival of membrane disruptions, disruption-induced exocytosis serves also the important protective function of liberating lubricating mucus at sites of mechanical wear and tear. This mode of mechanotransduction can, we propose, explain how lubrication in the gastrointestinal tract is rapidly and precisely adjusted to widely fluctuating, diet-dependent levels of mechanical stress.  相似文献   

9.
We hypothesized that the requirement for Ca(2+)-dependent exocytosis in cell-membrane repair is to provide an adequate lowering of membrane tension to permit membrane resealing. We used laser tweezers to form membrane tethers and measured the force of those tethers to estimate the membrane tension of Swiss 3T3 fibroblasts after membrane disruption and during resealing. These measurements show that, for fibroblasts wounded in normal Ca(2+) Ringer's solution, the membrane tension decreased dramatically after the wounding and resealing coincided with a decrease of approximately 60% of control tether force values. However, the tension did not decrease if cells were wounded in a low Ca(2+) Ringer's solution that inhibited both membrane resealing and exocytosis. When cells were wounded twice in normal Ca(2+) Ringer's solution, decreases in tension at the second wound were 2.3 times faster than at the first wound, correlating well with twofold faster resealing rates for repeated wounds. The facilitated resealing to a second wound requires a new vesicle pool, which is generated via a protein kinase C (PKC)-dependent and brefeldin A (BFA)-sensitive process. Tension decrease at the second wound was slowed or inhibited by PKC inhibitor or BFA. Lowering membrane tension by cytochalasin D treatment could substitute for exocytosis and could restore membrane resealing in low Ca(2+) Ringer's solution.  相似文献   

10.
The temperature dependence of the action of polymyxin B on Escherichia coli was studied by using K+, Ca2+, and tetraphenylphosphonium (TPP+) ion-selective electrodes. At room temperature (27 degrees C), Ca2+ was released immediately after addition of polymyxin, while the efflux of K+ occurred after 30 s. The rapid release of Ca2+ was not affected by incubation temperature, while the efflux of K+ was significantly lowered at temperatures below about 25-30 degrees C. The uptake of TPP+ also increased after polymyxin addition. The release of Ca2+ and the uptake of TPP+ supported the disruption of the outer membrane structure reported previously. In experiments with isolated membrane vesicles (the cytoplasmic membrane being exposed), the efflux of K+ was not delayed, but was lowered at temperatures below about 15-20 degrees C. This temperature range differed significantly from that of whole cells, and was interpreted as representing a difference in membrane fluidity between the outer and cytoplasmic membranes. The phase transition temperature of the outer membrane is known to be higher than that of the cytoplasmic membrane; and the temperature dependence of efflux of K+ from membrane vesicles was compatible with the phase transition temperature of liposomes prepared with phospholipids (not containing lipopolysaccharides) extracted from E. coli. Thus, it was speculated that, with whole cells, polymyxin molecules passed through the outer membrane at temperatures above the phase transition and reached the cytoplasmic membrane, increasing its K+ permeability. The mechanism of the permeability change is discussed in terms of deformation of the cytoplasmic membrane structure induced by polymyxin molecules.  相似文献   

11.
Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes   总被引:16,自引:0,他引:16  
Reddy A  Caler EV  Andrews NW 《Cell》2001,106(2):157-169
Plasma membrane wounds are repaired by a mechanism involving Ca(2+)-regulated exocytosis. Elevation in intracellular [Ca(2+)] triggers fusion of lysosomes with the plasma membrane, a process regulated by the lysosomal synaptotagmin isoform Syt VII. Here, we show that Ca(2+)-regulated exocytosis of lysosomes is required for the repair of plasma membrane disruptions. Lysosomal exocytosis and membrane resealing are inhibited by the recombinant Syt VII C(2)A domain or anti-Syt VII C(2)A antibodies, or by antibodies against the cytosolic domain of Lamp-1, which specifically aggregate lysosomes. We further demonstrate that lysosomal exocytosis mediates the resealing of primary skin fibroblasts wounded during the contraction of collagen matrices. These findings reveal a fundamental, novel role for lysosomes: as Ca(2+)-regulated exocytic compartments responsible for plasma membrane repair.  相似文献   

12.
Vectorial sorting of plasma membrane protein-containing vesicles is essential for the establishment and maintenance of cell polarity. In the present study, the involvement of altered vesicle transport in the redistribution of membrane-bound Ca2+, Mg2+-ATPase resulting from cholestasis was investigated in hepatocytes. Cholestasis was induced in rat liver by common bile duct ligation. Ca2+, Mg2+-ATPase activity was demonstrated histochemically at the light and electron microscopical levels. Microtubules, an important factor for transcellular transport of vesicles, were studied in situ by immunofluorescence microscopy and electron microscopy in detergent-extracted preparations. The results showed that microtubules underwent significant changes after common bile duct ligation. The most pronounced alteration was focal accumulation of -tubulin in the cytoplasm of hepato cytes after 7 days of common bile duct ligation. At the electron microscopical level, the number of microtubules was increased considerably. In control livers, the activity of Ca2+, Mg2+-ATPase was localized only at the apical plasma membrane of hepatocytes, but it was also present at the basolateral plasma membrane after common bile duct ligation. The number of intracellular vesicles containing Ca2+, Mg2+-ATPase activity was increased strikingly, and some of them were associated with lateral membrane domains in which Ca2+, Mg2+-ATPase activity was found. It is concluded that common bile duct ligation induces the rearrangement of microtubules, which may disturb vectorial transport of Ca2+, Mg2+-ATPase-containing vesicles in hepatocytes, leading to the redistribution of Ca2+, Mg2+-ATPase. © 1998 Chapman & Hall  相似文献   

13.
《The Journal of cell biology》1995,131(5):1183-1192
At fertilization in sea urchin eggs, elevated cytosolic Ca2+ leads to the exocytosis of 15,000-18,000 1.3-microns-diam cortical secretory granules to form the fertilization envelope. Cortical granule exocytosis more than doubles the surface area of the egg. It is thought that much of the added membrane is retrieved by subsequent endocytosis. We have investigated how this is achieved by activating eggs in the presence of aqueous- and lipid-phase fluorescent dyes. We find rapid endocytosis of membrane into 1.5-microns-diam vesicles starting immediately after cortical granule exocytosis and persisting over the following 15 min. The magnitude of this membrane retrieval can compensate for the changes in the plasma membrane of the egg caused by exocytosis. This membrane retrieval is not stimulated by PMA treatment which activates the endocytosis of clathrin-coated vesicles. When eggs are treated with short wave-length ultraviolet light, cortical granule exocytosis still occurs, but granule cores fail to disperse. After egg activation, large vesicles containing semi-intact cortical granule protein cores are observed. These data together with experiments using sequential pulses of fluid-phase markers support the hypothesis that the bulk of membrane retrieval immediately after cortical granule exocytosis is achieved through direct retrieval into large endocytotic structures.  相似文献   

14.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. The vesicle preparation contained high, digitalis-sensitive (Na+ + K+)-ATPase activities indicating its origin from the basolateral portion of plasma membrane. The operation of a Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

15.
Membrane phosphorylation and nucleoside triphosphatase activity of sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle were studied using ATP and ITP as substrates. The Ca2+ concentration was varied over a range large enough to saturate either the high affinity Ca2+-binding site or both high and low affinity binding sites. In intact vesicles, which are able to accumulate Ca2+, the steady state level of enzyme phosphorylated by either ATP or ITP is already high in 0.02 mM Ca2+ and does not vary as the Ca2+ concentration is increased to 10 mM. Essentially the same pattern of membrane phosphorylation by ATP is observed when leaky vesicles, which are unable to accumulate Ca2+, are used. However, for leaky vesicles, when ITP is used as substrate, the phosphoenzyme level increases 3- to 4-fold when the Ca2+ concentration is raised from 0.02 to 20 mM. When Mg2+ is omitted from the assay medum, the degree of membrane phosphorylation by ATP varies with Ca2+ in the same way as when ITP is used in the presence of Mg2+. Membrane phosphorylation of leaky vesicles by either ATP or ITP is observed in the absence of added Mg2+. When these vesicles are incubated in media containing ITP and 0.1 mM Ca2+, addition of Mg2+ up to 10 mM simultaneously decreases the steady state level of phosphoenzyme and increases the rate of ITP hydrolysis. When ATP is used, the addition of 10 mM Mg2+ increases both the steady state level of phosphoenzyme and the rate of ATP hydrolysis. When the Ca2+ concentration is raised to 10 or 20 mM, the degree of membrane phosphorylation by either ATP or ITP is maximal even in the absence of added Mg2+ and does not vary with the addition of 10 mM Mg2+. In these conditions the ATPase and ITPase activities are activated by Mg2+, although not to the level observed in 0.1 mM Ca2+. An excess of Mg2+ inhibits both the rate of hydrolysis and membrane phosphorylation by either ATP or ITP.  相似文献   

16.
T Togo 《PloS one》2012,7(8):e42885
Resealing of a disrupted plasma membrane at the micron-diameter range requires Ca(2+)-regulated exocytosis. Repeated membrane disruptions reseal more quickly than the initial wound, and this potentiation of membrane resealing persists for at least 24 hours after the initial wound. Long-term potentiation of membrane resealing requires CREB-dependent gene expression, which is activated by the PKC- and p38 MAPK-dependent pathway in a wounded cell. The present study demonstrates that membrane resealing is potentiated in both wounded and neighboring cells in MDCK cells. Wounding of cells expressing CREB133, a mutant variant of CREB, does not show the potentiated response of cell membrane resealing in either wounded or neighboring cells. Furthermore, wounding of cells induces CREB phosphorylation, not only in wounded cells, but also in neighboring cells. Inhibition of the nitric oxide/PKG signaling pathway suppresses CREB phosphorylation in neighboring cells, but not in wounded cells. The potentiation of membrane resealing in neighboring cells is suppressed if the nitric oxide/PKG pathway is inhibited during the initial wound. Together, these results suggest that the nitric oxide/PKG pathway stimulates CREB phosphorylation in neighboring cells so that subsequent cell membrane disruptions of the neighboring cells reseal more quickly.  相似文献   

17.
A microneedle puncture of the fibroblast or sea urchin egg surface rapidly evokes a localized exocytotic reaction that may be required for the rapid resealing that follows this breach in plasma membrane integrity (Steinhardt, R.A,. G. Bi, and J.M. Alderton. 1994. Science (Wash. DC). 263:390–393). How this exocytotic reaction facilitates the resealing process is unknown. We found that starfish oocytes and sea urchin eggs rapidly reseal much larger disruptions than those produced with a microneedle. When an ~40 by 10 μm surface patch was torn off, entry of fluorescein stachyose (FS; 1,000 mol wt) or fluorescein dextran (FDx; 10,000 mol wt) from extracellular sea water (SW) was not detected by confocal microscopy. Moreover, only a brief (~5–10 s) rise in cytosolic Ca2+ was detected at the wound site. Several lines of evidence indicate that intracellular membranes are the primary source of the membrane recruited for this massive resealing event. When we injected FS-containing SW deep into the cells, a vesicle formed immediately, entrapping within its confines most of the FS. DiI staining and EM confirmed that the barrier delimiting injected SW was a membrane bilayer. The threshold for vesicle formation was ~3 mM Ca2+ (SW is ~10 mM Ca2+). The capacity of intracellular membranes for sealing off SW was further demonstrated by extruding egg cytoplasm from a micropipet into SW. A boundary immediately formed around such cytoplasm, entrapping FDx or FS dissolved in it. This entrapment did not occur in Ca2+-free SW (CFSW). When egg cytoplasm stratified by centrifugation was exposed to SW, only the yolk platelet–rich domain formed a membrane, suggesting that the yolk platelet is a critical element in this response and that the ER is not required. We propose that plasma membrane disruption evokes Ca2+ regulated vesicle–vesicle (including endocytic compartments but possibly excluding ER) fusion reactions. The function in resealing of this cytoplasmic fusion reaction is to form a replacement bilayer patch. This patch is added to the discontinuous surface bilayer by exocytotic fusion events.  相似文献   

18.
The cation-binding characteristics of isolated sarcolemmal vesicles from rat and canine cardiac muscle cells were investigated. To help elucidate the molecular properties involved in these interactions the cation-induced aggregation behavior of rat and canine cardiac sarcolemmal vesicles, sonicated unilamellar vesicles (SUVs) made from sarcolemmal lipid extracts, and SUVs generated from combinations of synthetic lipids similar to those found in the sarcolemmal membrane, as well as mitochondrial and sarcoplasmic reticulum enriched membrane fractions were examined. Our results indicate that cations, such as Ca2+, to indeed bind to the sarcolemmal membrane surface. They also suggest that two (or more) interacting sites are involved in the Ca2+-induced aggregation of the isolated sarcolemmal vesicles, and that sarcolemmal lipid components could be the primary binding sites. The modulating (secondary) sites on the other hand may be protein or carbohydrate in nature, or require specific lipid organizational properties. Finally, the results indicate that the interactions of cations, such as Ca2+, with the sarcolemmal surface are species specific, with the sarcolemmal membranes of both rat and canine preparations having different physico-chemical properties.  相似文献   

19.
Fast digital imaging was used to study the deformation and poration of giant unilamellar vesicles subjected to electric pulses. For the first time the dynamics of response and relaxation of the membrane at micron-scale level is revealed at a time resolution of 30 micros. Above a critical transmembrane potential the lipid bilayer ruptures. Formation of macropores (diameter approximately 2 microm) with pore lifetime of approximately 10 ms has been detected. The pore lifetime has been interpreted as interplay between the pore edge tension and the membrane viscosity. The reported data, covering six decades of time, show the following regimes in the relaxation dynamics of the membrane. Tensed vesicles first relax to release the acquired stress due to stretching, approximately 100 micros. In the case of poration, membrane resealing occurs with a characteristic time of approximately 10 ms. Finally, for vesicles with excess area an additional slow regime was observed, approximately 1 s, which we associate with relaxation of membrane curvature. Dimensional analysis can reasonably well explain the corresponding characteristic timescales. Being performed on cell-sized giant unilamellar vesicles, this study brings insight to cell electroporation. The latter is widely used for gene transfection and drug transport across the membrane where processes occurring at different timescales may influence the efficiency.  相似文献   

20.
《The Journal of cell biology》1995,131(6):1737-1745
Plasma membrane disruptions are resealed by an active molecular mechanism thought to be composed, in part, of kinesin, CaM kinase, snap- 25, and synaptobrevin. We have used HRP to mark the cytoplasmic site of a mechanically induced plasma membrane disruption. Transmission electron microscopy revealed that vesicles of a variety of sizes rapidly (s) accumulate in large numbers within the cytoplasm surrounding the disruption site and that microvilli-like surface projections overlie this region. Scanning electron microscopy confirmed that tufts of microvilli rapidly appear on wounded cells. Three assays, employing the membrane specific dye FM1-43, provide quantitative evidence that disruption induces Ca(2+)-dependent exocytosis involving one or more of the endosomal/lysosomal compartments. Confocal microscopy revealed the presence in wounded cells of cortical domains that were strikingly depleted of FM dye fluorescence, suggesting that a local bolus of exocytosis is induced by wounding rather than global exocytosis. Finally, flow cytometry recorded a disruption-induced increase in cell forward scatter, suggesting that cell size increases after injury. These results provide the first direct support for the hypothesis that one or more internal membrane compartments accumulate at the disruption site and fuse there with the plasma membrane, resulting in the local addition of membrane to the surface of the mechanically wounded cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号