首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liberation and metabolism of arachidonic acid may be the common final pathway of different stimuli on the pulmonary vascular bed. In a model of isolated, ventilated rabbit lungs, perfused with Krebs Henseleit albumin buffer in a recirculating system, changes of pulmonary vascular resistance and of vascular permeability are monitored continuously. The addition of free arachidonic acid or of the Ca-ionophore A 23187 to the perfusion fluid consistently evokes a biphasic increase in vascular resistance as well as an initially reversible increase in vascular permeability, followed by pulmonary edema. Both phases of increased vascular resistance are completely suppressed by inhibition of the cyclooxygenase, decreased to a large degree by inhibitors of thromboxane synthetase, and markedly augmented by short preincubation of arachidonic acid with ram seminal vesicular microsomes and by sulfhydryl reagents. The increased pulmonary vascular permeability is augmented by inhibition of cyclooxygenase and reduced by simultaneous lipoxygenase inhibition. Antagonists of histamine, serotonin and sympathic or parasympathic activity do not have any influence. PG F2alpha., TxB2, PG E2 and PG I2 alter the pulmonary vascular resistance, but do not increase vascular permeability. In conclusion, increased availability of free arachidonic acid evokes a rise in pulmonary vascular resistance, which can be ascribed to cyclooxygenase products, especially to thromboxane, and causes a rise in vascular permeability which can be ascribed to lipoxygenase products. The findings may be related to acute pulmonary lesions with increase in vascular resistance and with vascular leakage.  相似文献   

2.
Current techniques do not permit continuous and noninvasive assessments of changes in total pulmonary intravascular volume. Hence, the present study was undertaken to determine whether quantitative radionuclide imaging can be used to determine the direction and estimate the magnitude of total pulmonary vascular volume changes. The pulmonary circulation was separately perfused at a constant rate via the pulmonary artery and drained at a constant pressure via the left atrium in nine dogs. Changes in pulmonary intravascular volume were recorded as reciprocal changes in extracorporeal reservoir volume during phenylephrine or isoproterenol administration, a 20% increase in pulmonary artery flow or a 5 mmHg (1 mmHg = 133.32 Pa) decrease in left atrial pressure. Erythrocytes were labeled with technetium-99m and pulmonary volume changes were determined from tissue attenuation, blood radioactivity, and changes in total pulmonary radioactivity obtained with a gamma-camera. During each of the interventions, count changes correlated with volume changes (r greater than or equal to 0.75). The technique reliably detected volume changes as small as 10 mL. For all 531 individual pairs of radionuclide- and reservoir-determined volume changes, the correlation between reservoir-determined and radionuclide-estimated pulmonary intravascular volume changes was 0.87. The standard error of the radionuclide estimate was 21 mL. Hence, the present study demonstrates that quantitative radionuclide imaging can be used to continuously and noninvasively determine total pulmonary vascular volume changes.  相似文献   

3.
In vitro evidence suggests that resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation are mediated by changes in vascular smooth muscle concentrations of guanosine 3',5'-cyclic monophosphate (cGMP). We investigated this hypothesis in vivo in 19 mechanically ventilated intact lambs by determining the hemodynamic effects of methylene blue (a guanylate cyclase inhibitor) and then by comparing the hemodynamic response to five vasodilators during pulmonary hypertension induced by the infusion of U-46619 (a thromboxane A2 mimic) or methylene blue. Methylene blue caused a significant time-dependent increase in pulmonary arterial pressure. During U-46619 infusions, acetylcholine, ATP-MgCl2, sodium nitroprusside, isoproterenol, and 8-bromo-cGMP decreased pulmonary arterial pressure. During methylene blue infusions, the decreases in pulmonary arterial pressure caused by acetylcholine and ATP-MgCl2 (endothelium-dependent vasodilators) and sodium nitroprusside (an endothelium-independent guanylate cyclase-dependent vasodilator) were attenuated by greater than 50%. The decreases in pulmonary arterial pressure caused by isoproterenol and 8-bromo-cGMP (endothelium-independent vasodilators) were unchanged. This study in intact lambs supports the in vitro evidence that changes in vascular smooth muscle cell concentrations of cGMP in part mediate resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation.  相似文献   

4.
Liberation and metabolism of arachidonic acid may be the common final pathway of different stimuli on the pulmunary vascular bed. In a model of isolated, ventilated rabbit lungs, perfused with krebs Henseleit albumin buffer in a recirculating system, changes of pulmonary vascular resistance and of vascular permeability are monitored continously. The addition of free arachidonic acid or of the Ca-ionophore A 23187 to the perfusion fluid consistently evokes a biphasic increases in vascular resistance as well as an initially reversible increase in vascular permeability, followed by pulmonary edema. Both phases of increased vascular resistance are completely suppressed by inhibition of the cyclooxygenase, decreased to a large degree by inhibitors of thromnoxane synthetase, and markedly augmented by short preincubation of arachidonic acid with ram seminal vescular microsomes and by sulfhydryl reagents. The increased pulmonary vascular permeability is augmented by inhibition of cyclooxygenase and reduced by simulteneous lipoxygenase inhibition. Antagonists of histamine, serotonin and sympathic or parasympathic activity do not have any influence.PG F, TxB E2 and PG I2 alter the pulmonary vascular resistance, but do not increase vascular permeability.In inclusion, increased availability of free arachidonic acid evokes a rise in pulmonary vascular resistance, which can be ascribed to cyclooxygenase products, especially to thromboxane, and causes a rise in vascular permeability which can be ascribed to lipoxygenase products.The findings may be related to acute pulmonary lesions with increase in vascular resistance and with vascular leakage.  相似文献   

5.
Prolonged exposure to alveolar hypoxia induces physiological changes in the pulmonary vasculature that result in the development of pulmonary hypertension. A hallmark of hypoxic pulmonary hypertension is an increase in vasomotor tone. In vivo, pulmonary arterial smooth muscle cell contraction is influenced by vasoconstrictor and vasodilator factors secreted from the endothelium, lung parenchyma and in the circulation. During chronic hypoxia, production of vasoconstrictors such as endothelin-1 and angiotensin II is enhanced locally in the lung, while synthesis of vasodilators may be reduced. Altered reactivity to these vasoactive agonists is another physiological consequence of chronic exposure to hypoxia. Enhanced contraction in response to endothelin-1 and angiotensin II, as well as depressed vasodilation in response to endothelium-derived vasodilators, has been documented in models of hypoxic pulmonary hypertension. Chronic hypoxia may also have direct effects on pulmonary vascular smooth muscle cells, modulating receptor population, ion channel activity or signal transduction pathways. Following prolonged hypoxic exposure, pulmonary vascular smooth muscle exhibits alterations in K+ current, membrane depolarization, elevation in resting cytosolic calcium and changes in signal transduction pathways. These changes in the electrophysiological parameters of pulmonary vascular smooth muscle cells are likely associated with an increase in basal tone. Thus, hypoxia-induced modifications in pulmonary arterial myocyte function, changes in synthesis of vasoactive factors and altered vasoresponsiveness to these agents may shift the environment in the lung to one of contraction instead of relaxation, resulting in increased pulmonary vascular resistance and elevated pulmonary arterial pressure.  相似文献   

6.
实验性高原肺水肿发病机制的初步研究   总被引:4,自引:0,他引:4  
本研究用Wistar大鼠在模拟海拔6000m高度停留48h,对实验性高原肺水肿的发病机制进行了初步观察,结果表明:(1)大鼠肺血管外含水量明显增多;(2)肺泡隔增宽,肺泡隔内血管口径大小不一,有的扩张,有的狭窄甚至闭锁,硝酸镧示踪电镜术发现肺泡上皮、血管内皮和肺泡隔内有数量不等的镧颗粒;(3)硝苯啶或地塞米松均可使肺血管外含水量明显降低,二者联合作用效果更佳;(4)血浆内心钠素(ANP)含量明显增多,伴有体重和血液含水量明显减少。从而表明,低氧性肺动脉压升高和肺泡壁微血管壁通透性增强在高原肺水肿的发生中有重要作用。血浆ANP增加和伴随的血液浓缩是对抗血浆进一步外渗的因素之一。  相似文献   

7.
Pulmonary vascular resistance in the fluorocarbon-filled lung   总被引:3,自引:0,他引:3  
Pulmonary vascular resistance was investigated in the fluorocarbon-filled lung in an in situ isolated lung preparation. Lungs were perfused at constant flow (100 ml X min-1 X kg-1) with whole blood from a donor cat. left atrial pressure was held constant at zero pressure. Measurements of pulmonary arterial pressure enabled calculation of pulmonary vascular resistance. Regional changes in pulmonary blood flow were determined by the microsphere technique. During quasi-static deflation over a range of 0-30 mmHg, dependent alveolar pressure was consistently greater for a volume of fluorocarbon than for gas, with each pressure-volume curve for the fluorocarbon-filled lung shifted to the right of the curve for the gas-filled lung. In turn, pulmonary vascular resistance was found to increase linearly as a function of increasing alveolar pressure, independent of the medium in the lung. Thus, for a given volume, pulmonary vascular resistance was consistently greater in the fluorocarbon-filled lung compared with the gas-filled lung. This increase in pulmonary vascular resistance was accompanied by a redistribution of pulmonary blood flow in which blood flow to the dependent region was decreased in the fluorocarbon-filled lung compared with the gas-filled lung. Conversely, the less-dependent regions of the lung received a relatively greater percentage of blood flow when filled with fluorocarbon compared with gas. These findings suggest that pulmonary vascular resistance is increased during liquid ventilation, largely as the result of mechanical interaction at the alveolar-vascular interface.  相似文献   

8.
Many chronic pulmonary diseases are associated with pulmonary hypertension (PH) and pulmonary vascular remodeling, which is a term that continues to be used to describe a wide spectrum of vascular abnormalities. Pulmonary vascular structural changes frequently increase pulmonary vascular resistance, causing PH and right heart failure. Although rat models had been standard models of PH research, in more recent years the availability of genetically engineered mice has made this species attractive for many investigators. Here we review a large amount of data derived from experimental PH reports published since 1996. These studies using wild-type and genetically designed mice illustrate the challenges and opportunities provided by these models. Hemodynamic measurements are difficult to obtain in mice, and right heart failure has not been investigated in mice. Anatomical, cellular, and genetic differences distinguish mice and rats, and pharmacogenomics may explain the degree of PH and the particular mode of pulmonary vascular adaptation and also the response of the right ventricle.  相似文献   

9.
We studied the effects on pulmonary hemodynamics of U-46619, a thromboxane A2 (TXA2) agonist, before and after administration of a novel TXA2 receptor antagonist and synthase inhibitor (BM-573). Six anesthetized pigs (Ago group) received 6 consecutive injections of U-46619 at 30-min interval and were compared with six anesthetized pigs (Anta group) which received an increasing dosage regimen of BM-573 10 min before each U-46619 injection. Consecutive changes in pulmonary hemodynamics, including characteristic resistance, vascular compliance, and peripheral vascular resistance, were continuously assessed during the experimental protocol using a four-element Windkessel model. At 2 mg/kg, BM-573 completely blocked pulmonary hypertensive effects of U-46619 but pulmonary vascular compliance still decreased. This residual effect can probably be explained by a persistent increase in the tonus of the pulmonary vascular wall smooth muscles sufficient to decrease vascular compliance but not vessel lumen diameter. Such molecule could be a promising therapeutic approach in TXA2 mediated pulmonary hypertension as it is the case in pulmonary embolism, hyperacute lung rejection and endotoxinic shock.  相似文献   

10.
This report describes the pulmonary vascular response of infant lamb lung to abrupt cessation of positive end-expiratory pressure (PEEP) during volume-regulated continuous positive-pressure breathing (CPPB). In an intact, endobronchially ventilated preparation, the increase in left lung blood flow (QL) after abrupt cessation of 11 Torr left lung PEEP was found to be gradual, although peak airway pressure (Pmax) fell promptly from 36 to 14 Torr; 49% of the increase in QL occurred greater than 10 s after cessation of PEEP. Recruitment of zone I vasculature that had been created by balloon occlusion of the left pulmonary artery was found to occur promptly after balloon deflation. Isolated neonatal lamb lungs, perfused at constant flow rate, showed similar persistent elevation of pulmonary vascular resistance after cessation of 15 Torr PEEP, although Pmax fell abruptly from 39 to 12 Torr. This hysteresis was eliminated by calcium channel blockade with verapamil, and the magnitude of the change in pulmonary arterial pressure after either application or cessation of PEEP was reduced (25 and 26%, respectively). These observations suggest that, during CPPB, lung stretch alters neonatal pulmonary vascular tone or, by causing calcium channel-dependent lung volume hysteresis, modulates pulmonary vascular resistance. This interaction exaggerates the effect of airway pressure changes on pulmonary vascular resistance during mechanical ventilation.  相似文献   

11.
Changes in pulmonary haemodynamics, produced during stimulation of the nasal mucosa with xylol fumes, were found in experiments on anaesthetized rabbits. In spontaneously breathing animals, a decrease in the mean blood pressure in the pulmonary artery and an increase in the mean blood pressure in the left atrium occurred in addition to apnoea and bradycardia. Pulmonary vascular resistance fell significantly, whereas systemic vascular resistance rose. Changes in the pulmonary circulation during nasal stimulation in spontaneously breathing rabbits did not differ significantly from changes in artifically ventilated animals.  相似文献   

12.
The relative roles of hematogenous mediators and direct bacterial toxicity due to phagocytosis by pulmonary intravascular macrophages were determined by selective bacterial infusion into the left pulmonary artery and comparison of right and left lungs at 24 h. Chronically instrumented sheep received 15-min pulmonary arterial infusions of live Pseudomonas aeruginosa (0.35-2.9 x 10(9), n = 6) or saline (n = 5). The saline group demonstrated stable cardiopulmonary function over time. Left lung blood flow, measured by Doppler flow probe, decreased 15 min into the bacterial infusion, with a concomitant sevenfold increase in left lung pulmonary vascular resistance index. The right lung pulmonary vascular resistance index doubled at 1 h, in association with increased plasma thromboxane B2 levels. An increase in cardiac index and decrease in systemic vascular resistance occurred at 12 h. The wet-to-dry weight ratio of the Pseudomonas-infused left lung was increased compared with that of the sham-infused lung. The tissue count of neutrophils in the lungs was doubled in both sides, but neutrophils on the left were more degranulated. The left lung tissue damage was caused by direct bacterial toxicity, including activation of phagocytic cells. Hematogenous mediators induced pulmonary and systemic hemodynamic changes and right lung neutrophil sequestration, but they did not damage the noninfused lung.  相似文献   

13.
We examined exercise-induced changes in indicator-dilution estimates of the angiotensin-converting enzyme first-order kinetic parameter, the ratio of a normalized maximal enzymatic conversion rate to the Michaelis constant (Amax/Km), which, under stable enzymatic conditions, will vary with the pulmonary vascular surface area accessible to vascular substrate, the extravascular lung water (an index of the proportion of lung tissue perfused), and the central blood volume (from pulmonary trunk to aorta). Experiments were performed in 10 mongrel dogs at rest and through two increasing levels of treadmill exercise, with the use of two vascular space tracers (labeled erythrocytes and albumin), a water space tracer ([1,8-14C]-octanediol), and a vascular endothelium surface area marker, benzoyl-Phe-Gly-Pro ([3H]BPGP), which is a pharmacologically inactive angiotensin-converting enzyme substrate. The exercise-induced increase in cardiac output was accompanied by a linear increase in central blood volume, and dilutional extravascular lung water rapidly increased to an asymptotic proportion close to 100% of postmortem vascular lung water. There was an average 55% [3H]BPGP hydrolysis, which did not vary with flow, and the computed Amax/Km increased linearly with exercise. We conclude that exercise results in complete lung tissue recruitment and increases the pulmonary vascular surface area available for BPGP hydrolysis linearly with flow, so that pulmonary vascular recruitment continues after full tissue recruitment.  相似文献   

14.
Chronic hypoxia causes pulmonary hypertension and right ventricular hypertrophy associated with pulmonary vascular remodeling. Because hypoxia might promote generation of oxidative stress in vivo, we hypothesized that oxidative stress may play a role in the hypoxia-induced cardiopulmonary changes and examined the effect of treatment with the antioxidant N-acetylcysteine (NAC) in rats. NAC reduced hypoxia-induced cardiopulmonary alterations at 3 wk of hypoxia. Lung phosphatidylcholine hydroperoxide (PCOOH) increased at days 1 and 7 of the hypoxic exposure, and NAC attenuated the increase in lung PCOOH. Lung xanthine oxidase (XO) activity was elevated from day 1 through day 21, especially during the initial 3 days of the hypoxic exposure. The XO inhibitor allopurinol significantly inhibited the hypoxia-induced increase in lung PCOOH and pulmonary hypertension, and allopurinol treatment only for the initial 3 days also reduced the hypoxia-induced right ventricular hypertrophy and pulmonary vascular thickening. These results suggest that oxidative stress produced by activated XO in the induction phase of hypoxic exposure contributes to the development of chronic hypoxic pulmonary hypertension.  相似文献   

15.
The pulmonary vascular tree undergoes remarkable postnatal development and remodeling. While a number of studies have characterized longitudinal changes in vascular function with growth, none have explored regional patterns of vascular remodeling. We therefore studied six neonatal pigs to see how regional blood flow changes with growth. We selected pigs because of their rapid growth and their similarities to human development with respect to the pulmonary vascular tree. Fluorescent microspheres of varying colors were injected into the pulmonary circulation to mark regional blood on days 3, 12, 27, 43, and 71 after birth. The animals were awake and in the prone posture for all injections. The lungs were subsequently removed, air dried, and sectioned into approximately 2-cm(3) pieces. Flow on each injection day was determined for each piece. Despite the increase in the hydrostatic gradient in the lung with growth, there was a strong correlation between blood flow to the same lung piece when compared on days 3 and 71 (0.73 +/- 0.12). Although a dorsal-ventral gradient of perfusion did not exist on day 3, blood flow increased more in the dorsal region by day 12 and then gradually became more uniform by day 71. Although most of the lung pieces did not show any discernable pattern of blood flow redistribution, there were spatial patterns of blood flow redistribution that were similar across animals. Our findings suggest that local mechanisms, shared across animals, guide regional changes in vascular resistance or vasoregulation during postnatal development. In the pig, these mechanisms act to produce more uniform flow in the normal posture for an ambulating quadruped. The stimuli for these changes have not yet been identified.  相似文献   

16.
The effects of indomethacin on the pulmonary circulation and the response of the circulation to hypoxia were investigated in premature and mature newborns using an isolated perfusion technique on otherwise intact left lungs in situ. There was an increase in pulmonary vascular resistance and augmentation of the increase in pulmonary vascular resistance during hypoxia following indomethacin. These effects were greater in the premature than in the mature newborn. Indomethacin effectively removes a dilator influence on the pulmonary circulation. The results are consistent with the concept that prostaglandins are important in regulating pulmonary vascular resistance.  相似文献   

17.
Although thromboxane and prostacyclin (PGI2) have long been described as major controllers of pulmonary vascular resistance, little has been reported on the characteristics of the interactions between the two arachidonic acid products. The current study uses segmental vascular resistance and compliance measurements to evaluate the actions of thromboxane and PGI2 in isolated blood-perfused rat lung. The thromboxane analogue U-46619 increases pulmonary vascular resistance by increasing only small artery resistance and decreases pulmonary vascular compliance in the middle compartment. Among the vascular effects of U-46619 are a maximum increase in resistance (RmaxU-46619) of 60.3 +/- 15.6 cmH2O.l-1.min.100 g-1 and a concentration required for 50% of maximum increase (K0.5,U-46619) of 1.60 +/- 0.85 nM for small artery resistance, a minimum vascular compliance (CminU-46619) of -0.93 +/- 0.58 cmH2O, and a K0.5,U-46619 of 1.10 +/- 1.60 nM for middle compartment compliance. Similar results were obtained for total resistance and total compliance. The effects of PGI2 on thromboxane-induced resistance and compliance changes were evaluated using K0.5,PGI2, RmaxPGI2, and CmaxPGI2 at each dose of thromboxane. PGI2 was more effective in reversing the thromboxane constriction at higher concentrations of thromboxane. These data show that the absolute concentration of PGI2 and thromboxane and not a simple ratio of thromboxane to PGI2 determines vascular tone.  相似文献   

18.
Chronic sojourn in hypoxic environment results in the structural remodeling of peripheral pulmonary arteries and pulmonary hypertension. We hypothesize that the pathogenesis of changes in pulmonary vascular structure is related to the increase of radical production induced by lung tissue hypoxia. Hypoxia primes alveolar macrophages to produce more hydrogen peroxide. Furthermore, the increased release of oxygen radicals by other hypoxic lung cells cannot be excluded. Several recent reports demonstrate the oxidant damage of lungs exposed to chronic hypoxia. The production of nitric oxide is high in animals with hypoxic pulmonary hypertension and the serum concentration of nitrotyrosine (radical product of nitric oxide and superoxide interaction) is also increased in chronically hypoxic rats. Antioxidants were shown to be effective in the prevention of hypoxia induced pulmonary hypertension. We suppose that the mechanism by which the radicals stimulate of the vascular remodeling is due to their effect on the metabolism of vascular wall matrix proteins. Non-enzymatic protein alterations and/or activation of collagenolytic matrix metalloproteinases may also participate. The presence of low-molecular weight cleavage products of matrix proteins stimulates the mesenchymal proliferation in the wall of distal pulmonary arteries. Thickened and less compliant peripheral pulmonary vasculature is then more resistant to the blood flow and the hypoxic pulmonary hypertension is developed.  相似文献   

19.
In pulmonary hypertension, changes in pulmonary vascular structure and function contribute to the elevation in pulmonary artery pressure. The time-courses for changes in function, unlike structure, are not well characterised. Medial hypertrophy and neomuscularisation and reactivity to vasoactive agents were examined in parallel in main and intralobar pulmonary arteries and salt-perfused lungs from rats exposed to hypoxia (10% O2) for 1 and 4 weeks (early and established pulmonary hypertension, respectively). After 1 week of hypoxia, in isolated main and intralobar arteries, contractions to 5-hydroxytryptamine and U46619 (thromboxane-mimetic) were increased whereas contractions to angiotensins I and II and relaxations to acetylcholine were reduced. These alterations varied quantitatively between main and intralobar arteries and, in many instances, regressed between 1 and 4 weeks. The alterations in reactivity did not necessarily link chronologically with alterations in structure. In perfused lungs, constrictor responses to acute alveolar hypoxia were unchanged after 1 week but were increased after 4 weeks, in conjunction with the neomuscularisation of distal alveolar arteries. The data suggest that in hypoxic pulmonary hypertension, the contribution of altered pulmonary vascular reactivity to the increase in pulmonary artery pressure may be particularly important in the early stages of the disease.  相似文献   

20.
We examined the acute changes in anastomotic bronchial blood flow (Qbr) serially for the 1st h after pulmonary arterial obstruction and subsequent reperfusion. We isolated and perfused the pulmonary circulation of the otherwise intact left lower lobe (LLL) with autologous blood in the widely opened chest of anesthetized dogs. Qbr was measured from the amount of blood overflowing from the closed pulmonary vascular circuit and the changes in the lobe weight. The right lung and the test lobe (LLL) were ventilated independently. The LLL, which was in zone 2 (mean pulmonary arterial pressure = 14.8 cm H2O, pulmonary venous pressure = 0, alveolar pressure = 5-15 cmH2O), was weighed continuously. The systemic blood pressure, gases, and acid-base status were kept constant. In control dogs without pulmonary arterial obstruction, the Qbr did not change for 2 h. Five minutes after pulmonary arterial obstruction, there was already a marked increase in Qbr, which then continued to increase for 1 h. After reperfusion, Qbr decreased. The increase in Qbr was greater after complete lobar than sublobar pulmonary arterial obstruction. It was unaltered when the downstream pulmonary venous pressure was increased to match the preobstruction pulmonary microvascular pressure. Thus, in zone 2, reduction in downstream pressure was not responsible for the increase in Qbr; neither was the decrease in alveolar PCO2, since ventilating the lobe with 10% CO2 instead of air did not change the Qbr. These findings suggest that there is an acute increase in Qbr after pulmonary arterial obstruction and that is not due to downstream pressure or local PCO2 changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号