首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The development of various lactic acid bacteria during the early stages of fermentation (1–6 days after ensiling) in fish silage was studied. The first type of organisms that grew fastest was the oval cocci (most of them resembledLeuconostoc mesenteroides andStreptococcus lactis) followed by round cocci (mostlyS. faecalis). The number of oval cocci increased rapidly one day after ensiling and then decreased after 2–3 days. The round cocci increased first after 2–3 days and then decreased slowly after 4–5 days. Lactobacilli began to increase in number (more than 1010 per g silage) first after 6 days. Thus the pH in the silage was mainly lowered by the action of streptococci. Also in MRS medium the pH was more rapidly lowered byS. faecalis than byLactobacillus plantarum and other rods.  相似文献   

2.
The process of ensiling was studied in fresh maize (15% dry matter (DM)), wilted maize (18 and 24% DM) and maize mixed with 5–20% of wheat straw (18, 25 and 29% DM). Silages with 24% DM were preserved better than those with lower dry matter content. There was a significant change, with time, in pH, titrable acidity, volatile fatty acids, lactic acid, number of lactic acid bacteria, volatile nitrogen and soluble sugars in all the treatments. There was a significant decline in volatile fatty acids (P<0.05) and ammonia (P<0.01) production, and a significant increase in soluble sugar (P<0.01) in silages made after wilting. A significant decline in titrable acidity (P<0.01), volatile fatty acid production (p<0.05) and ammonia nitrogen (P<0.01), and a significant increase in pH (P<0.01) were found in silages of maize mixed with wheat straw. The overall rate of fermentation decreased during the first few days of fermentation in wilted and wheat straw silages, but the final products had characteristics of a good silage. In the second experiment the effect of urea and molasses was studied on wheat straw plus maize (15:85) silage with an initial DM content of 31–34%. Three levels of molasses (0, 3 and 6% of fresh weight) and two levels of urea (0 and 0.5% of fresh weight) were studied. Urea treatment with 3% molasses was found to be the best on the basis of silage characteristics.  相似文献   

3.
A rifampicin-resistant variant of two strains of Lactobacillus plantarum, one strain of Pediococcus acidilactici, and one strain of Enterococcus faecium were used for the experimental production of lucerne silage. Laboratory silage without inoculants served as a control. Counts of total anaerobes, total lactic acid bacteria (LAB), lactobacilli, pediococci, and enterococci were determined on days 14, 21, 30, 49, and 60 of lucerne fermentation. LAB dominated in silage microflora, reaching a percentage between 59 and 95 % of total anaerobes. Lactobacilli were found as a predominant group of LAB during the whole study. Lactobacilli reached numbers 8.74 log CFU/g in treated silage and 8.89 log CFU/g in the control at the first observation. Their counts decreased to 4.23 and 4.92 log CFU/g in treated silage and the control, respectively, on day 63 of fermentation. Similar decreases were observed in all bacterial groups. The treated silage samples possessed lower pH (4.2 vs. 4.5 in control samples) and contained more lactic acid compared to control silage. The identity of re-isolated rifampicin-resistant bacteria with those inoculated to the lucerne was evaluated by fingerprinting techniques. The fingerprint profiles of re-isolated bacteria corresponded to the profiles of strains used for the treatment. It could be concluded that supplemented LAB dominated in laboratory silage and overgrew naturally occurring LAB.  相似文献   

4.
Aerobic deterioration of lucerne, maize and wheat silages was characterized by rapid increases in yeast and mould flora which oxidized lactic and volatile acids resulting in increased temperature and pH. While populations of yeasts and moulds were similar, temperature increases were slightly greater for silages inoculated with Lactobacillus acidophilus and Candida spp. After 48 h the pH of the inoculated silages was higher in general and concentrations of acids were lower than controls. Bacterial growth was slight although continued lactic acid production was probable. In contrast to lucerne and maize silages, the pH of wheat silage remained stable during this period because of high butyric levels, but temperature and yeast populations increased. After 48 h the pH rose above 5 in maize and lucerne, and bacterial growth and metabolic activity resumed resulting in volatile and non-volatile acid production from carbohydrate fermentation and deamination of amino acids. During this phase of aerobic deterioration yeast growth slowed or stopped, but temperatures remained high and pH continued to climb probably because of production of ammonia. The changes in gross composition of the silages did not follow any particular pattern. Losses in dry matter were small (2.5–4.0%) and changes in individual components probably reflect this loss rather than substantial changes. Protein availability in the lucerne silages undoubtedly decreased, as protein losses were high. It is concluded that the aerobic deterioration of silage is enhanced by the addition of L. acidophilus and Candida spp. at ensiling.  相似文献   

5.
AIMS: To investigate the effects of inoculating Lactobacillus casei or Lacobacillus buchneri on the production of biogenic amines (BA) in silage. METHODS AND RESULTS: Wilted festulolium (Lolium perenne x Festuca pratensis), whole crop maize or a total mixed ration, consisting of wet brewer grains, lucerne hay, cracked maize, sugarbeet pulp, soyabean meal and molasses, was ensiled with or without the inoculation of either L. casei (>10(6) CFU g(-1)) or L. buchneri (>10(6) CFU g(-1)). Silages were opened after 60 days of storage, and the concentrations of histamine, tyramine, putrescine and cadaverine were determined. The inoculation of L. casei decreased all the BA regardless of the silage type. The effects of L. buchneri varied between the three silages; the tyramine and putrescine were increased in maize but were lowered in festulolium. Histamine was reduced in festulolium and the by-products, whereas no change was found in the maize silage. None of the inoculant strains produced the four BA in a synthetic medium, accounting for the actual ensiling except for tyramine and putrescine in maize. CONCLUSIONS: Wide variation would be found in the production of BA owing to the ensiling materials. The inoculation of L. casei can lower the BA concentration, while the effects of L. buchneri may vary considerably. The screening of BA-producing activity may help to reduce the risk of BA contamination in inoculated silage. SIGNIFICANCE AND IMPACT OF THE STUDY: Strains of decarboxylase-negative L. buchneri can enhance the aerobic stability of silage without a concern regarding the large production of putrefactive BA.  相似文献   

6.
The critical roughage part (CRP) of 2 diet types was determined in a cross-over design with 6 double-muscled and 6 normally conformated Belgian Blue bulls fitted with rumen cannulae. The roughage:concentrate ratio was lowered weekly until signs of a lack of physical structure were observed. For diet 1, consisting of maize silage and concentrates, the initial proportion of maize silage was 25% of DM but it decreased weekly with 5% units of DM. For the second diet, consisting of wheat straw and concentrate, 12% straw (DM basis) was provided during the first week and thereafter the proportion of straw decreased weekly with 3% units of DM. Several directly observable parameters (rumen pH, feed intake, bloat, faecal consistency) were evaluated weekly for each bull. Apart from these direct indicators of acidosis, also other parameters, whose results were only available after the end of the trial, were determined (volatile fatty acid profile, lactic acid concentration, chewing time). The roughage part between the part fed when signs of a lack of physical structure was first observed and the part that was fed the week before, was considered as the CRP. Most animals showed no acute signs of clinical acidosis (directly observable parameters) and finished the trial on a 100% concentrate diet. However, in sacco rumen DM-degradabilities of maize silage, grass silage and wheat grain was depressed considerably when low roughage diets were fed. Based on all observed parameters, the mean CRP was calculated to be 14.7% for diet 1 and 8.1% for diet 2. The beef type (double-muscled or not) had no influence on the CRP.  相似文献   

7.
The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e., no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a “fitness” value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a “cost” element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage fermentation. We found that these combinations compared favorably both with uninoculated silage and with a commercial silage additive. The evolutionary computing methods described here are a convenient and efficient approach for designing silage additives.  相似文献   

8.
The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e. , no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a "fitness" value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a "cost" element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage fermentation. We found that these combinations compared favorably both with uninoculated silage and with a commercial silage additive. The evolutionary computing methods described here are a convenient and efficient approach for designing silage additives.  相似文献   

9.
The objectives of this study were to determine the effect of inoculant, enzymes and inoculant-enzymes mixture on fermentation quality, nutritive value, and microbial changes of sorghum straw silage. Sorghum straws were collected and treated with distilled water (control), inoculant, enzymes and inoculant+enzymes prior to ensiling. Three bag silos for each silage (denoted C, I, E and I+E, respectively) were opened after 3, 7, 11, 15, 30 and 60 days for chemical and microbial analyses. For all the silages, there was a rapid decline in pH during the first 3 days of ensiling. Relative to silage C, all the treatment (I, E and I+E) had higher (P<0.05) lactic acid concentration at all ensiling periods. Population of LAB during all ensiling time was numerically greater for treated than control silages. Separate addition of two additives, especially for enzymes, can effectively (P<0.05) decrease aNDF and ADF concentration. Treatments with enzymes (E, I+E) can also improve significantly silage IVDMD and IVNDFD concentration. These results indicated that the addition of additives can improve the sorghum straw silage fermentation quality at different extent.  相似文献   

10.
When molasses was added during ensilage of three tropical grasses [hamil grass (Panicum maximum cv. Hamil), pangola grass (Digitaria decumbens) and setaria (Setaria sphacelata cv. Kazungula)] the final pH, concentration of fermentation acids (except lactic acid) and NH3–N content were all similar after 100 days of incubation. Pangola grass silage had significantly higher lactic acid content (66 g/kg dry matter) than the other two. Adding either 4 or 8% (w/w) molasses reduced NH3–N, volatile fatty acid content and pH but increased lactic acid content in the final silages. Numbers of lactic acid bacteria remained approximately constant during the course of the fermentation, although large differences were noted in the species composition of the populations. At the time of ensiling, only Pediococcus spp. and Leuconostoc spp. were detected. By 5 days, the homo-fermentative population, notably Lactobacillus plantarum, dominated (43%) and remained dominant. Hetero-fermentative rods were only detected in the 100-day silage, where they represented 29% of the strains isolated. Homo-fermenters were more abundant in pangola (60%) and setaria (47%) silages than hamil (27%) silages. Homo-fermenter populations were lowest in the 12-week forage. Molasses additions increased homo-fermenter populations. Pangola grass gave the best quality silage but, since the water-soluble carbohydrate content in the grasses was insufficient to promote a strong lactic fermentation, the addition of 20 to 30 kg molasses/tonne should achieve satisfactory preservation.M. Tjandraatmadja and B.W. Norton are with the Department of Agriculture, The University of Queensland, Queensland, 4072, Australia; I.C. Mac Rae is with the Department of Microbiology, The University of Queensland, Queensland, 4072, Australia.  相似文献   

11.
Seasonally produced biomass such as sugar beet pulp (SBP) and tomato pomace (TP) needs to be stored properly to meet the demand of sustainable biofuel production industries. Ensilage was used to preserve the feedstock. The effect of moisture content (MC) on the performance of ensilage and the relationship between microorganism activities and MC were investigated. For SBP, MC levels investigated were 80, 55, 30, and 10% on a wet basis. For TP, MC levels investigated were 60, 45, 30, and 10%. Organic acids, ethanol, ammonia, pH and water soluble carbohydrates (WSC) were measured to evaluate the silage quality. Ensilage improved as the MC decreased from 80 to 55% for SBP and from 60 to 45% for TP. When the MC decreased to 30%, a little microbial activity was detected for both feedstocks. Storage at 10% MC prevented all the microbial activity. The naturally occurring microorganisms in TP were found to preserve TP during silage and were isolated and determined by polymerase chain reaction (PCR). The results suggest that partial drying followed by ensilage may be a good approach for stabilization of food processing residues for biofuels production.  相似文献   

12.
ABSTRACT

The study investigated the production of volatile organic compounds during the fermentation of maize containing 26.8% dry matter (DM). Forage was ensiled without additive or treated with 2 ml/kg of a chemical silage additive (SA) containing per litre 257 g sodium benzoate, 134 g potassium sorbate and 57 g ammonium propionate, and either sealed immediately or with a delay of 24 h. During the fermentation process, DM-losses, fermentation pattern (including ethyl lactate [EL] and ethyl acetate [EA]) and yeast numbers were determined. Delayed sealing and no SA resulted in highest DM losses with significant interactions between sealing time (ST) and SA on all sampling days (p < 0.001). The effects on organic acid production were variable depending on storage length. Ethanol production was affected by ST and SA, but promptly sealed silage treated with SA had consistently the lowest concentrations. Higher ethanol content during fermentation was associated with higher DM losses, as reflected by a strongly linear, positive relationship (R2 = 0.70, p < 0.001). Compared with promptly sealed silage, the counts of yeasts were higher after delayed sealing during the first 7 d of storage (p < 0.001). Moreover, SA reduced yeast numbers compared with untreated silage (p < 0.01). EL concentrations increased throughout storage, whereas EA acetate accumulation was very rapid and intense already during the early stages of fermentation and peaked on d 34. The differences in concentrations and accumulation pattern between EL and EA, especially during the early fermentation phases, make evident that their synthesis was facilitated by different pathways and reactions, respectively.  相似文献   

13.
Grass silage is typically fed to dairy cows in temperate regions. However, in vivo information on methane (CH4) emission from grass silage of varying quality is limited. We evaluated the effect of two rates of nitrogen (N) fertilisation of grassland (low fertilisation (LF), 65 kg of N/ha; and high fertilisation (HF), 150 kg of N/ha) and of three stages of maturity of grass at cutting: early maturity (EM; 28 days of regrowth), mid maturity (MM; 41 days of regrowth) and late maturity (LM; 62 days of regrowth) on CH4 production by lactating dairy cows. In a randomised block design, 54 lactating Holstein–Friesian dairy cows (168±11 days in milk; mean±standard error of mean) received grass silage (mainly ryegrass) and compound feed at 80 : 20 on dry matter basis. Cows were adapted to the diet for 12 days and CH4 production was measured in climate respiration chambers for 5 days. Dry matter intake (DMI; 14.9±0.56 kg/day) decreased with increasing N fertilisation and grass maturity. Production of fat- and protein-corrected milk (FPCM; 24.0±1.57 kg/day) decreased with advancing grass maturity but was not affected by N fertilisation. Apparent total-tract feed digestibility decreased with advancing grass maturity but was unaffected by N fertilisation except for an increase and decrease in N and fat digestibility with increasing N fertilisation, respectively. Total CH4 production per cow (347±13.6 g/day) decreased with increasing N fertilisation by 4% and grass maturity by 6%. The smaller CH4 production with advancing grass maturity was offset by a smaller FPCM and lower feed digestibility. As a result, with advancing grass maturity CH4 emission intensity increased per units of FPCM (15.0±1.00 g CH4/kg) by 31% and digestible organic matter intake (33.1±0.78 g CH4/kg) by 15%. In addition, emission intensity increased per units of DMI (23.5±0.43 g CH4/kg) by 7% and gross energy intake (7.0±0.14% CH4) by 9%, implying an increased loss of dietary energy with advancing grass maturity. Rate of N fertilisation had no effect on CH4 emissions per units of FPCM, DMI and gross energy intake. These results suggest that despite a lower absolute daily CH4 production with a higher N fertilisation rate, CH4 emission intensity remains unchanged. A significant reduction of CH4 emission intensity can be achieved by feeding dairy cows silage of grass harvested at an earlier stage of maturity.  相似文献   

14.
Vitellogenin synthesis during a decrease in egg production caused by depriving food and water was investigated in Single Comb White Leghorn hens. They were transferred from long days of 14L: 10D to short days of 10L: 14D 5 days before food and water deprivation. Then food was deprived for 5 days and water for 2 days. The body weight was markedly decreased by the treatment and reached its minimum after 5 days. The egg production rate which was 85% before the treatment was nil after 4 days. On day 3 the circulating vitellogenin concentrations, measured by a newly established RIA system, was markedly decreased by deprivation of food and water to 22% of the pretreatment level. The concentrations remained less than 10% during cessation of egg laying. Serum luteinizing hormone (LH) and progesterone concentrations decreased gradually, but estradiol 17 beta (E2) decreased abruptly. This acute decrease closely coincided with the decrease in egg production and the weight of the oviduct and ovary. These concentrations were gradually increased after day 16 and returned to the normal level after 46 days. Circulating thyroxine (T4) and triiodothyronine (T3) concentrations gradually increased from the beginning of the change in the day length and peaked on day 7 or 9, whereas reverse (r)T3 rapidly increased. The concentrations again decreased at the beginning of molting which occurred later due to the deprivation of food and water. Thus, these results demonstrated for the first time that the decrease in egg production induced by deprivation of food and water closely related to the decrease in vitellogenin synthesis as well as gonadal and pituitary functions. Further, recovery of egg production was coupled with the increase in the ovary and oviduct weight, and circulating LH, E2, progesterone, and vitellogenin.  相似文献   

15.
The effect of the rate of increase in concentrate allowance after calving with two concentrate mixes (A and B) differing in composition was evaluated using 64 Finnish Ayrshire cows during the first 100 days of lactation. After calving, the concentrate allowance of multiparous cows was increased stepwise from 4 to 17 kg/day, and of primiparous cows from 3 to 13.5 kg/day over 12 days (F rate of increase; multiparous 1.08 kg/day, primiparous 0.88 kg/day) or 24 days (S rate of increase; mutiparous 0.54 kg/day, primiparous 0.44 kg/day). The concentrates were formulated to have similar crude protein and metabolizable energy concentrations but differing starch and NDF concentrations. For concentrate A the starch and NDF concentrations were 421 and 167 g/kg dry matter (DM) and for concentrate B 258 and 251 g/kg DM. All cows received grass silage ad libitum. The higher concentrate intake during weeks 1 to 4 of lactation with F compared with the S rate of increase caused higher DM, energy and protein intake. The higher concentrate intake for F than for S treatment in early lactation did not cause a large decrease in silage intake (8.8 v. 8.3 kg DM/day). The intake of concentrate A and B after calving did not differ for S treatment. However, for F treatment the intake of fibrous concentrate B increased faster than starch-rich concentrate A during weeks 1 to 4 of lactation. The concentrate composition had no effect on energy-corrected milk (ECM) yield during weeks 1 to 4 of lactation for S treatments, but with F treatments the cows fed B concentrate produced more milk. The F rate of increase in concentrate allowance compared with the S rate increased the calculated energy balance after calving. The rate of increase in concentrate feeding post partum or concentrate composition had no effect on DM, energy or protein intake during the whole 100-day experiment. The average ECM yield over days 1 to 100 of lactation was higher for S than for F treatments and tended to be higher with concentrate B than A. Results of this study showed that by the fast rate of increase in concentrate allowance after calving on a grass silage diet, it was possible to improve the energy status of the cows in early lactation. This had, however, no effect on production later in lactation.  相似文献   

16.
The use of length-heterogeneity PCR was explored to monitor lactic acid bacteria succession during ensiling of maize. Bacterial diversity was studied during the fermentation of 30-day-old maize in optimal and spoilage-simulating conditions. A length heterogeneity PCR profile database of lactic acid bacteria isolated from the silage and identified by 16S rRNA gene sequencing was established. Although interoperonic 16S rRNA gene length polymorphisms were detected in some isolates, strain analysis showed that most of the lactic acid bacteria species thriving in silage could be discriminated by this method. The length heterogeneity PCR profiles of bacterial communities during maize fermentation were compared with those on a database. Under optimal fermentation conditions all the ecological indices of bacterial diversity, richness and evenness, deduced from community profiles, increased until day thirteen of fermentation and then decreased to the initial values. Pediococcus and Weissella dominated, especially in the first days of fermentation. Lactococcus lactis ssp. lactis and Lactobacillus brevis were mainly found after six days of fermentation. A peak corresponding to Lactobacillus plantarum was present in all the fermentation phases, but was only a minor fraction of the population. Unsuitable fermentation conditions and withered maize leaves in the presence of oxygen and water excess caused an enrichment of Enterococcus sp. and Enterobacter sp.  相似文献   

17.
NaCl-tolerant lactic acid bacteria (LAB) strains LC-10 ( Lactobacillus casei ) and LP-15 ( Lact. plantarum ) and NaCl were used as additives to sorghun ( Sorghum bicolor ). Numbers of LAB were significantly ( P < 0·05) higher in all the additive-treated silages than in the control silage at an early stage of ensiling. During the fermentation process, addition of NaCl or LAB effectively inhibited the growth of aerobic bacteria and clostridia, but not yeasts. All the additive-treated silages had significantly ( P < 0·05) lower pH, ammonia nitrogen content, dry matter loss and gas production but significantly ( P < 0·05) higher lactic acid content and residual water soluble carbohydrates compared with the control silage. The improvement in silage quality was in the order : LAB > NaCl > control. Yeast counts were high in all additive-based silages and they increased during the exposure of the silages to air. As a result, these silages suffered aerobic deterioration, whereas the control silage was stable. The results confirmed that the NaCl or LAB improved fermentation quality but did not prevent aerobic deterioration of the silage.  相似文献   

18.
Eighteen Pediococcus strains were screened for their potential as silage inoculants. Pediococcus acidilactici G24 was found to be the most suitable, exhibiting a short lag phase on both glucose and fructose, a rapid rate of acid production, a high sugar-to-lactate conversion efficiency, no detectable breakdown of proteins or lactic acid, and the ability to grow within a broad range of pH and temperature. When tested in laboratory silos using grass with a water-soluble carbohydrate content of 24 g/kg of aqueous extract, P. acidilactici G24 stimulated the natural Lactobacillus plantarum population and accelerated the rates of lactic acid production and pH decrease. After 6 days of fermentation, the inoculated silage exhibited a 12% decrease in ammonia nitrogen and an 11% increase in crude protein levels compared with uninoculated controls. The use of an L. plantarum inoculant at a rate of 104 bacteria per g of grass in conjunction with P. acidilactici G24 produced no additional beneficial effect. Inoculation of grass with a water-soluble carbohydrate level of 8 g/kg of aqueous extract with P. acidilactici G24 led to no acceleration in the rate of L. plantarum growth or pH decrease. However, after 7 days of fermentation the inoculated silage had a 14% lower ammonia nitrogen protein content than did uninoculated controls. The results suggest that P. acidilactici G24 may be useful as a silage inoculant for crops with a sufficiently high water-soluble carbohydrate level.  相似文献   

19.
To comprehensively evaluate the fermentation performance and microbial community of corn stalks (CS) silage mixed with Neolamarckia cadamba leaves (NCL), CS were ensiled with four levels (0%, 10%, 30% and 50% of fresh weight) of NCL for 1, 7, 14, 30, 60 days in two trials. The results showed that all silages were well preserved with low pH (3.60–3.88) and ammonia nitrogen content (0.08–0.19% DM). The silage samples with NCL displayed lower (< 0.05) acetic acid, propionic acid and ammonia nitrogen contents and lactic acid bacteria population during ensiling than control silages (100% CS). The addition of NCL also influenced the distribution of bacterial and fungal communities. Fungal diversity (Shannon’s indices were 5.15–5.48 and 2.85–4.27 in trial 1 and trial 2 respectively) increased while the relative abundances of Lactobacillus, Leuconostocs, Acetobacter and two moulds (Aspergillus and Fusarium) decreased after added NCL. In summary, mixing NCL is a promising effective approach to preserve protein of CS silage and inhibit the growth of undesirable bacteria and mould, thus to improve the forage quality to some extent.  相似文献   

20.
Effect of sodium chloride and pH on enterotoxin B production   总被引:20,自引:1,他引:19  
Genigeorgis, Constantin (University of California, Davis), and Walter W. Sadler. Effect of sodium chloride and pH on enterotoxin B production. J. Bacteriol. 92:1383-1387. 1966.-The growth and production of enterotoxin B by Staphylococcus aureus strain S-6 in Brain Heart Infusion broth with 2 to 16% sodium chloride and an initial pH of 5.1 to 6.9 was studied during a 10-day incubation period at 37 C. Growth was good at pH 6.9 and with a 16% concentration of salt, but no cells survived after 10 days of incubation at pH 5.1 and with a 16% concentration of salt. With geldiffusion technique, enterotoxin B was detected in broth with pH 6.9 and up to 10% salt or pH 5.1 and up to 4% salt. Growth and enterotoxin production were better when pH was increased and salt concentration was decreased. The dependence of toxin production on the interaction of these two factors was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号