首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vital role of coenzyme Q in mitochondrial electron transfer and its regulation, and in energy conservation, is well established. However, the role of coenzyme Q in free oxyradical formation and as an antioxidant remains controversial. Demonstration of the existence of the semiquinone form of coenzyme Q during electron transport, coupled with recent evidence that hydrogen peroxide (but not molecular oxygen) may act as an oxidant of the semiquinone, suggests that the highly reactive OH. radical may be formed from the semiquinone. On the other hand, data exist implicating the Fe-S species as the source of electron transfer chain, free radical production. Additional data exist suggesting instead that the unpaired electron of the coenzyme Q semiquinone most likely dismutases superoxide radicals. These concepts and those arising from observations at several levels of organization including subcellular systems, intact animals, and human subjects in the clinical setting, supporting the concept of reduced coenzyme Q as an antioxidant, will be presented. The results of recent studies on the interaction between the two-electron quinone reductase--DT diaphorase and coenzyme Q10 will be presented. The possibility that superoxide dismutase may interact with reduced coenzyme Q, in conjunction with DT diaphorase inhibiting its autoxidation, will be described. The regulation of cellular coenzyme Q concentrations during oxidative stress accompanying aerobic exercise, resulting in increased protection from free radical damage, will also be presented.  相似文献   

2.
Published experimental data pertaining to the participation of coenzyme Q as a site of free radical formation in the mitochondrial electron transfer chain and the conditions required for free radical production have been reviewed critically. The evidence suggests that a component from each of the mitochondrial NADH-coenzyme Q, succinate-coenzyme Q, and coenzyme QH2-cytochrome c reductases (complexes I, II, and III, most likely a nonheme iron-sulfur protein of each complex, is involved in free radical formation. Although the semiquinone form of coenzyme Q may be formed during electron transport, its unpaired electron most likely serves to aid in the dismutation of superoxide radicals instead of participating in free radical formation. Results of studies with electron transfer chain inhibitors make the conclusion dubious that coenzyme Q is a major free radical generator under normal physiological conditions but may be involved in superoxide radical formation during ischemia and subsequent reperfusion. Experiments at various levels of organization including subcellular systems, intact animals, and human subjects in theclinical setting, support the view that coenzyme Q, mainly in its reduced state, may act as an antioxidant protecting a number of cellular membranes from free radical damage.  相似文献   

3.
The formation of ortho-quinone from ortho-diphenol is a key step in its dimerization. An NMR analysis of the oxidation of 3,4-dihydroxycinnamic acid (caffeic acid) by NaIO4 revealed the formation of 3-(3',4'-dioxo-1',5'-cyclohexadienyl) propenoic acid (o-quinone) prior to the formation of furofuran-type lignan 4,8-exo-bis (3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane-2,6-dione. Both electrolytic and enzymatic oxidation of caffeic acid also generated o-quinone. The yields of o-quinone from caffeic acid were quantified by NMR and HPLC analyses. A stable isotope-labeling study of the formation of lignans directly proved the random radical coupling of semiquinone radicals formed from a set of caffeic acid and o-quinone.  相似文献   

4.
The formation of ortho-quinone from ortho-diphenol is a key step in its dimerization. An NMR analysis of the oxidation of 3,4-dihydroxycinnamic acid (caffein acid) by NaIO4 revealed the formation of 3-(3',4'-dioxo-1',5'-cyclohexadienyl) propenoic acid (o-quinone) prior to the formation of furofuran-type lignan 4,8-exo-bis(3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane-2,6-dione. Both electrolytic and enzymatic oxidation of caffeic acid also generated o-quinone. The yields of o-quinone from caffeic acid were quantified by NMR and HPLC analyses. A stable isotope-labeling study of the formation of lignans directly proved the random radical coupling of semiquinone radicals formed from a set of caffeic acid and o-quinone.  相似文献   

5.
Cytochrome P-450-mediated redox cycling between the synthetic estrogen diethylstilbestrol (DES) and diethylstilbestrol-4',4"-quinone (DES Q) has previously been demonstrated. Cytochrome P-450 reductase catalyzes the reduction of DES Q presumably via a semiquinone formed by one-electron reduction. A reducing action of NAD(P)H quinone reductase (EC 1.6.99.2) mediating two-electron reduction of DES Q has been investigated in the present work. Quinone reductase catalyzed the conversion in the presence of NADH or NADPH of DES Q to 53-65% Z-DES, a marker product of reduction. Dicumarol (15 microM), a known specific inhibitor of quinone reductase, inhibited this reduction almost completely. Using microsomes from Syrian hamster kidney, a target organ of estrogen-induced carcinogenesis, the reduction of DES Q was only partially inhibited by dicumarol. Apparent Km values of quinone reductase and cytochrome P-450 reductase were 17.25 and 11.9 microM, respectively. These data demonstrate that in hamster kidney, quinone reductase and cytochrome P-450 reductase compete for the reduction of DES Q. Microsomal 02-. radical generation was stimulated 10-fold over base levels by the addition of 100 microM DES Q. The formation of 02-. radicals was inhibited by addition of superoxide dismutase (0.2 mg/ml) or by 2'-AMP or NADP, known inhibitors of cytochrome P-450 reductase. In contrast, dicumarol enhanced microsome-mediated 02-. formation. It is concluded that cytochrome P-450 reductase in hamster kidney microsomes mediates one-electron reduction of estrogen quinones to free radicals (semiquinones), which may subsequently enter redox cycling with molecular oxygen to form 02-.. Moreover, quinone reductase reduces DES Q directly to E- and Z-DES, and thus may prevent the formation of toxic intermediates during redox cycling of estrogens. Measurements of quinone reductase activity in liver and kidney of hamsters treated with estrogen for various lengths of time revealed a temporary decrease in activity by 80% specifically in the kidney after 1 month of chronic treatment with estradiol. Thus, a temporary decrease in quinone reductase activity, which occurred specifically in estrogen-exposed hamster kidney, may enhance the formation of free radical intermediates generated during biotransformation of estrogens.  相似文献   

6.
R B McWhirter  M H Klapper 《Biochemistry》1990,29(29):6919-6926
Methoxatin is a novel o-quinone coenzyme found in a variety of dehydrogenases and oxidases. In this paper we present the visible absorption spectra, apparent pKa, and midpoint potentials of the methoxatin and two analogous phenanthrolinedione semiquinones. We have also obtained absorption spectra for the semiquinone forms of the methoxatin-containing holoenzyme methylamine dehydrogenase and of its resolved methoxatin-containing subunit. The two protein and the methoxatin semiquinone spectra all differ from one another.  相似文献   

7.
Objectives and methods: Compared to age-matched healthy controls (n?=?55), patients with amyotrophic lateral sclerosis (ALS) (n?=?26) showed increased oxidative stress as indicated by a significantly increased percentage of oxidized coenzyme Q10 (%CoQ10) in total plasma coenzyme Q10, a significantly decreased level of plasma uric acid, and a significantly decreased percentage of polyunsaturated fatty acids in total plasma free fatty acids (FFA). Therefore, the efficacy of edaravone, a radical scavenger, in these ALS patients was examined.

Results and discussion: Among 26 ALS patients, 17 received edaravone (30?mg/day, one to four times a week) for at least 3 months, and 13 continued for 6 months. Changes in revised ALS functional rating scale (ALSFRS-R) were significantly smaller in these patients than in edaravone-untreated ALS patients (n?=?19). Edaravone administration significantly reduced excursions of more than one standard deviation from the mean for plasma FFA levels and the contents of palmitoleic and oleic acids, plasma markers of tissue oxidative damage, in the satisfactory progress group (ΔALSFRS-R?≥?0) as compared to the ingravescent group (ΔALSFRS-R?<??5). Edaravone treatment increased plasma uric acid, suggesting that it is an effective scavenger of peroxynitrite. However, edaravone administration did not decrease %CoQ10. Therefore, combined treatment with agents such as coenzyme Q10 may further reduce oxidative stress in ALS patients.  相似文献   

8.
A study of guinea pig and human skin in vivo has revealed that keratinocytes contain a thioenzyme which reduces radicals. This enzyme has been purified by affinity column chromatography and identified as thioredoxin reductase. In vivo and in vitro bioassays were performed by using a spin-labelled surfactant as the radical substrate, because it can diffuse through the stratum corneum and react by surface complexation with the epidermis and also on the outer plasma membrane of keratinocytes from cell cultures. Thioredoxin, the native substrate for thioredoxin reductase effectively competes for electrons with radical substrates. Nicotinamide adenine dinucleotide phosphate (NADPH) is the electron donating coenzyme in both the reduction of radicals and thioredoxin. Reduced thioredoxin has been shown to be an inhibitor of tyrosinase, whereas oxidized thioredoxin has no effect on this enzyme activity. Taken together these results indicate that the thioredoxin/thioredoxin reductase system plays an important role in preventing cell damage from UV-generated free radicals on the skin.  相似文献   

9.
The determination and toxicological characterization of products of the reaction between p-hydroxybenzoic acid esters (parabens) and singlet oxygen (1O2) are very important because of the frequent use of parabens in cosmetics and possible generation of 1O2 in the skin. We observed 1O2-dependent production of mono-, di-, and tri-substituted glutathione (GSH) conjugates of hydroquinone (HQ) during visible light-irradiation of a mixture of methyl or ethyl paraben and GSH in the presence of rose bengal (RB). 1,4-Benzoquinone (BQ) and HQ were produced during the irradiation in the absence of GSH. While a mixture of BQ and GSH produced only mono-substituted conjugate, irradiation of the mixture with RB produced mono-, di-, and tri-substituted conjugates. These observations indicate that 1O2 is involved both in the production of BQ and HQ from parabens and in the formation of multi-substituted GSH conjugates from mono-substituted conjugate. Tri-substituted conjugate generated larger amounts of hydrogen peroxide in an aqueous solution than mono-substituted conjugates or HQ did. Detection of semiquinone radical suggests that the autoxidation of conjugates is related to the generation of hydrogen peroxide. The results obtained in this study indicate that parabens may induce oxidative stress in the skin after conversion to GSH conjugates of HQ by reacting with 1O2 and GSH.  相似文献   

10.
In this work, we investigated whether cold exposure-induced hyperthyroidism increases oxidative damage and susceptibility to oxidants of rat liver, heart and skeletal muscle. All tissues exhibited gradual increases in hydroperoxide and protein-bound carbonyl levels. Glutathione peroxidase activity increased in all tissues after 2 days and further increased in the muscle after 10 days of cold exposure. Liver glutathione reductase activity increased after 10 days of cold exposure, while heart and muscle activities were not modified. Vitamin E levels were not affected by cold, while coenzyme Q9 and coenzyme Q10 levels decreased in heart and muscle after 2-day cold exposure and were not further modified after 10 days. Liver coenzyme Q9 levels increased after 2 days whereas coenzyme Q10 levels increased after 10 days in the cold. The whole antioxidant capacity was lowered, while parameters positively correlated with susceptibility to oxidants were increased by cold. Lipid fatty acid composition was modified in all tissues. In particular, fatty acid unsaturation degree increased in heart and muscle. Cytochrome oxidase activity increased, suggesting an increased content of hemoproteins, which are able to generate .OH radical. This view was supported by the observation that the tissue susceptibility to H(2)O(2) treatment, which is strongly correlated to iron-ligand content, increased after cold exposure. In this frame, it is apparent that the increase in oxidative capacity, necessary for homeotherm survival in low temperature environments, has potential harmful effects, because it results in increased susceptibility to oxidative challenge.  相似文献   

11.
Low-molecular-weight aldehydes (glyoxal, methylglyoxal, 3-deoxyglucosone) generated on autooxidation of glucose under conditions of carbonyl stress react much more actively with amino groups of L-lysine and epsilon-amino groups of lysine residues of apoprotein B-100 in human blood plasma low density lipoproteins (LDL) than their structural analogs (malonic dialdehyde (MDA), 4-hydroxynonenal) resulting on free radical oxidation of lipids under conditions of oxidative stress. Glyoxal-modified LDL aggregate in the incubation medium with a significantly higher rate than LDL modified by MDA, and MDA-modified LDL are markedly more poorly absorbed by cultured human macrophages and significantly more slowly eliminated from the rat bloodstream upon intravenous injection. Studies on kinetics of free radical oxidation of rat liver membrane phospholipids have shown that ubiquinol Q(10) is the most active lipid-soluble natural antioxidant, and suppression of ubiquinol Q(10) biosynthesis by beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins) is accompanied by intensification of lipid peroxidation in rat liver biomembranes and in LDL of human blood plasma. Injection of ubiquinone Q(10) protects the human blood plasma LDL against oxidation and prevents oxidative stress-induced damages to rat myocardium. A unified molecular mechanism of atherogenic action of carbonyl-modified LDL in disorders of lipid and carbohydrate metabolism is discussed.  相似文献   

12.
Peroxiredoxin I (Prx I) is a key cytoplasmic peroxidase that reduces intracellular hydroperoxides in concert with thioredoxin. To study the role of tissue Prx I in protection from oxidative stress, we generated Prx I-/- mice by gene trapping. We then evaluated the acute-phase tissue damage caused by ferric-nitrilotriacetate (Fe-NTA). Increases in serum aspartate aminotransferase and alanine aminotransferase levels were significantly greater in Prx I-/- than wild-type mice, 4 and 12 h after the injection of Fe-NTA. Using real-time EPR imaging, we examined the reduction of the stable paramagnetic nitroxyl radical 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl in vivo, and found that the half-life of this spin probe in the liver and kidney was significantly prolonged in the Prx I-/- mice. These results demonstrate that Prx I-/- mice have less reducing activity and are more susceptible to the damage mediated by reactive oxygen species in vivo than wild-type mice.  相似文献   

13.
Epidemiological studies have suggested that the use of aspirin is associated with a decreased incidence of human malignancies, particularly colorectal cancer. Since reactive oxygen species (ROS) are critically involved in multistage carcinogenesis, this study was undertaken to examine the ability of aspirin to inhibit ROS-mediated DNA damage. Hydrogen peroxide (H2O2)+Cu(II) and hydroquinone (HQ) + Cu(II) were used to cause oxidative DNA strand breaks in phiX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.5-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a marked inhibition of oxidative DNA damage induced by either H2O2/Cu(II) or HQ/Cu(II). The inhibition of oxidative DNA damage by aspirin was exhibited in a concentration-dependent manner. Moreover, aspirin was found to be much more potent than the hydroxyl radical scavengers, mannitol and dimethyl sulfoxide, in protecting against the H2O2/Cu(II)-mediated DNA strand breaks. Since the reduction of Cu(II) to Cu(I) is crucially involved in both H2O2/Cu(II)- and HQ/Cu(II)-mediated formation of hydroxyl radical or its equivalent, and the subsequent oxidative DNA damage, we examined whether aspirin could inhibit this Cu(II)/Cu(I) redox cycle. It was observed that aspirin at concentrations that showed the inhibitory effect on oxidative DNA damage did not alter the Cu(II)/Cu(I) redox cycle in either H2O2/Cu(II) or HQ/Cu(II) system. In addition, aspirin was not found to significantly scavenge H2O2. This study demonstrates for the first time that aspirin potently inhibits both H2O2/Cu(II)- and HQ/Cu(II)-mediated oxidative DNA strand breaks most likely through scavenging the hydroxyl radical or its equivalent derived from these two systems. The potent inhibition of oxidative DNA damage by aspirin may thus partially contribute to its anticancer activities observed in humans.  相似文献   

14.
Up to 2% of the oxygen consumed by the mitochondrial respiratory chain undergoes one electron reduction, typically by the semiquinone form of coenzyme Q, to generate the superoxide radical, and subsequently other reactive oxygen species such as hydrogen peroxide and the hydroxyl radical. Under conditions in which mitochondrial generation of reactive oxygen species is increased (such as in the presence of Ca2+ ions or when the mitochondrial antioxidant defense mechanisms are compromised), these reactive oxygen species may lead to irreversible damage of mitochondrial DNA, membrane lipids and proteins, resulting in mitochondrial dysfunction and ultimately cell death. The nature of this damage and the cellular conditions in which it occurs are discussed in this review article.  相似文献   

15.
Tocopherylquinone (TQ) is formed in the antioxidant action of tocopherol (T). TQ was found in human subjects and it was observed that the ratio alphaTQ/ alphaT increased in general with increasing oxidative stress. TQ is reduced to tocopheryl hydroquinone (TQH2) but the ratio TQH2/TQ in vivo has not been reported. TQH2 acts as a potent radical-scavenging antioxidant. alphaTQH2 is more reactive toward radicals than ubiquinol, a reduced form of coenzyme Q, and alphaT. The overall efficacy of TQH2 as an antioxidant is determined by the fate of semiquinone radical formed from TQH2 as well as the reactivity toward oxygen radicals. Partly substituted gammaTQ, but not alphaTQ, exerts cytotoxicity by both redox cycling and reaction with protein thiols and glutathione.  相似文献   

16.
Coenzyme Q10 is an important component of mitochondrial electron transport chain and antioxidant. Hyperthyroidism manifests hyperdynamic circulation with increased cardiac output, increased heart rate and decreased peripheral resistance. The heart is also under the oxidative stress in the hyperthyroidism. The aim of this study was to examine both how the coenzyme Q10 can affect heart ultrastructure in the hyperthyroidism and how the relationship between nitric oxide synthase (NOS) and heart damage and coenzyme Q10. Swiss Black C57 mice received 5 mg/kg L-thyroxine. Coenzyme Q10 (1.5 mg/kg) and L-thyroxine together was given to second group mice. Coenzyme Q10 and serum physiologic were applied to another two groups, respectively. All treatments were performed daily for 15 days by gavage. Free triiodothyronine and thyroxine were increased in two groups given L-thyroxine; thyroid-stimulating hormone level did not change. Hyperthyroid heart showed an increased endothelial NOS (eNOS) and inducible NOS (iNOS) immunoreactivity in the tissue. Coenzyme Q10 administration decreased these NOS immunoreactivities in the hyperthyroid animals. Cardiomyocytes of the hyperthyroid animals was characterized by abnormal shape and invaginated nuclei, and degenerative giant mitochondria. Desmosome plaques reduced in density. In hyperthyroid mice given coenzyme Q10, the structural disorganization and mitochondrial damage regressed. However, hearts of healthy mice given coenzyme Q10 displayed normal ultrastructure, except for increased mitochondria and some of them were partially damaged. Coenzyme Q10 increased the glycogen in the cardiomyocytes. In conclusion, coenzyme Q10 administration can prevent the ultrastructural disorganization and decrease the iNOS and eNOS increment in the hyperthyroid heart.  相似文献   

17.
The thioredoxin/thioredoxin reductase system is strongly induced in patients with rheumatoid arthritis (RA). We have investigated the impact on TR activity of doses of superoxide anion generated by the hypoxanthine (HX)/xanthine oxidase (XO) system and by hydrogen peroxide, H(2)O(2), for various times and compared the findings with synoviocytes obtained from osteoarthritis (OA) patients. At baseline, TR activity in RA cells was significantly higher than in OA cells (2.31 +/- 0.65 versus 0.74 +/- 0.43 mUnit/mg protein, p < 0.01). HX/XO and H(2)O(2) in RA cells decreased TR activity, which was found to be unchanged in OA cells. H(2)O(2) and superoxide anion caused a time-dependent accumulation of oxidized TR and induced the formation of carbonyl groups in TR protein in RA cells rather than OA cells, and oxidized the selenocysteine of the active site. The oxidation in TR protein was irreversible in RA cells but not in OA cells. In conclusion, we report that the oxidative aggression generates modifications in the redox status of the active site of the TR and induces an alteration of the Trx/TR system, concomitant with those of the other antioxidant systems that could explain the causes of oxidative stress related to RA disease.  相似文献   

18.
One-electron oxidation of dopamine by ferricyanide generates a highly reactive free radical intermediate that inactivates the V-type H(+)-ATPase proton pump in catecholamine storage vesicles, i.e., the driving force in both the vesicular uptake and the storage of catecholamines, in a cell-free in vitro model system at pH 7.0. Electron paramagnetic resonance spectroscopy revealed that a radical with g=2.0045, formed by this oxidation, was relatively long-lived (t(1/2) obs=79 s at pH 6.5 and 25 degrees C). Experimental evidence is presented that the observed radical most likely represents dopamine semiquinone free radical, although an o-quinone free radical cannot be ruled out. Oxidation of noradrenaline and adrenaline by ferricyanide generated similar isotropic radicals, but of shorter half-lives (i.e., 43 and 5.3 s, respectively), and the efficacy of inactivation of the H(+)-ATPase correlated with the half-life of the respective catecholamine free radical (i.e., dopamine >noradrenaline>adrenaline). Thus, the generation of relatively long-lived semiquinone free radicals, although at low concentrations, in dopaminergic and noradrenergic neurons may represent a common mechanism of cytotoxicity linked to neurodegeneration of the respective neurons related to Parkinson disease.  相似文献   

19.
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased unsaturated aldehyde levels and reduced antioxidant status play an important role in the pathogenesis of a number of human diseases such as Alzheimer's, atherosclerosis, and diabetes. Mammalian thioredoxin reductase (TR), a central antioxidant enzyme, is a selenoprotein that catalyzes the reduction of oxidized thioredoxin. The findings reported here show that low concentrations of acrolein rapidly inactivate TR, both in vitro and in vivo. These data suggest that acrolein may directly inactivate TR, resulting in an increase in oxidative cellular damage. In addition, we also found that the initial inactivation of TR molecules by acrolein triggers a compensatory signal for inducing TR gene expression in human umbilical vein endothelial cells (HUVEC). The results of the present study suggest that HUVEC may have a protective system against cell damage by acrolein via the upregulation of TR, which is an adaptive response to oxidative stress.  相似文献   

20.
Free radicals have been implicated in the action of many chemotherapeutic drugs. Here we tested the hypothesis that camptothecin and other chemotherapeutic drugs, such as etoposide, doxorubicin, and methotrexate, induce an increase in coenzyme Q(10) levels as part of the antioxidant defense against free radical production under these anticancer treatments in cancer cell lines. Chemotherapy treatment induced both free radical production and an increase in coenzyme Q(10) levels in all the cancer cell lines tested. Reduced coenzyme Q(10) form levels were particularly enhanced. Coenzyme Q(10)-increased levels were associated with up-regulation of COQ genes expression, involved in coenzyme Q(10) biosynthesis. At the translational level, COQ7 protein expression levels were also increased. Furthermore, coenzyme Q(10) biosynthesis inhibition blocked camptothecin-induced coenzyme Q(10) increase, and enhanced camptothecin cytotoxicity. Our findings suggest that coenzyme Q(10) increase is implicated in the cellular defense under chemotherapy treatment and may contribute to cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号