首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the neonate, adipose tissue and the lung both undergo a rapid transition after birth, which results in dramatic changes in uncoupling protein abundance and glucocorticoid action. Leptin potentially mediates some of these adaptations and is known to promote the loss of uncoupling protein (UCP)1, but its effects on other mitochondrial proteins or glucocorticoid action are not known. We therefore determined the effects of acute and chronic administration of ovine recombinant leptin on brown adipose tissue (BAT) and/or lung in neonatal sheep. For the acute study, eight pairs of 1-day-old lambs received, sequentially, 10, 100, and 100 mug of leptin or vehicle before tissue sampling 4 h from the start of the study, whereas in the chronic study, nine pairs of 1-day-old lambs received 100 mug of leptin or vehicle daily for 6 days before tissue sampling on day 7. Acute leptin decreased the abundance of UCP2, glucocorticoid receptor, and 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 mRNA and increased 11beta-HSD type 2 mRNA abundance in BAT, a pattern that was reversed with chronic leptin administration, which also diminished lung UCP2 protein abundance. In BAT, UCP2 mRNA abundance was positively correlated to plasma leptin and nonesterified fatty acids and negatively correlated to mean colonic temperature in the leptin group at 7 days. In conclusion, leptin administration to the neonatal lambs causes differential effects on UCP2 abundance in BAT and lung. These effects may be important in the development of these tissues, thereby optimizing lung function and fat growth.  相似文献   

3.
4.
Both exercise and high ambient temperatures stimulate the secretion of counterregulatory hormones which can change glucose homeostasis. We studied whether in diabetic patients there are any differences in the hormonal response to exercise performed at cool or warm ambient temperatures. A study was performed on eight male insulin-dependent patients at rest and during exercise at +10 degrees C and +30 degrees C. Exercise consisted of three consecutive 15-min periods at 60% of maximal aerobic capacity. The concentrations of plasma lactate and counterregulatory hormones at rest were similar at warm and cool temperature, whereas prolactin concentration was higher (P less than 0.01) at +30 degrees C. Exercise resulted in an increase in noradrenaline, growth hormone and prolactin (P less than 0.01), prevented the diurnal decrease in cortisol, but had no effect on glucagon. Hormone responses to exercise were similar at +10 degrees C and at +30 degrees C, except for cortisol and noradrenaline which showed greater responses at warm than at cool temperatures. This may have been due to the higher relative work load at warm compared to cool temperatures as suggested by the higher heart rate and greater increase of lactate at +30 degrees C. These data indicate that within a range of ambient temperatures commonly occurring in sports, the response of counterregulatory hormones is largely independent of ambient temperature in insulin-dependent diabetic patients.  相似文献   

5.
In loosely-restrained adult conscious rats exposed to stepwise changes in ambient temperature (T(a)) from 25 to 5 degrees C or from 20 to 35 degrees C, we have recorded body and tail temperatures, metabolic rate (VO(2)), shivering and ventilation (V). It was found that VO(2) and V vary with T(a) and show a nadir for a T(a) of 30 degrees C whereas shivering starts at 20 degrees C and increases progressively with cold exposure. T(tail) follows changes in T(a) whereas T(body) decreases slightly in cold and increases markedly in warm exposure. These results suggest that the control of T(body) interacts with the control of breathing in order to increase VO(2) during cold exposure and to facilitate evaporative respiratory heat dissipation during warm exposure.  相似文献   

6.
Experiments were done on ten lambs ranging in age from 15 to 25 days to define the temperature, metabolic and cardiorespiratory responses to intravenous administration of a small dose of bacterial pyrogen (SAE). Administration of SAE but not normal saline produced a short-lived fever of about 0.7 degrees C. The increase in body-core temperature was preceded by a surge in total body oxygen consumption and the onset of shivering which was influenced by behavioral state (ie, shivering was inhibited during active sleep). The increase in total body oxygen consumption was initially met by an increase in total body oxygen extraction and then by an increase in systemic oxygen delivery. Systemic arterial blood pressure did not change significantly during the febrile response; however, pulmonic arterial blood pressure increased significantly. Thus, our experiments provide new data on oxygen supply and demand during the development of fever and that shivering thermogenesis is inhibited in active sleep following the administration of bacterial pyrogen in young lambs. The influence of active sleep on the overall febrile response, and whether or not there is a shift from shivering thermogenesis to non-shivering thermogenesis remains to be determined.  相似文献   

7.
This study investigates the mechanisms involved in adjusting metabolic rate in response to acute changes in ambient temperature close to thermoneutrality during postnatal development. Twelve lambs were prepared for sequential studies at 4, 14, 30, 45 and 55 days of age. During each study they were maintained at ambient temperatures of 5, 10, 15, 20, 25 and 30 degrees C for at least 1 h and until a slow wave sleep epoch was established. Eight lambs completed all studies. In these there was a significant fall in oxygen consumption with age which was independent of ambient temperature. This effect was closely related to a decrease in plasma triiodothyronine concentration that was greatest between 4- and 14-days old lambs and was not associated with a change in the plasma concentration of thyrotrophin or thyroxine. In 4-days old lambs oxygen consumption was increased at ambient temperatures of 5 and 10 degrees C by non-shivering thermogenesis, whilst in 14- and 30-days old lambs this effect was achieved by shivering. On the basis of significant changes in oxygen consumption and/or the occurrence of shivering (lower critical temperature) and panting (upper critical temperature) we have shown that there is a fall in both upper and lower critical temperature with age and a widening of the thermoneutral zone. This was associated with a decrease in the plasma cortisol concentration and heart rate as measured at thermoneutrality, whilst rectal temperature increased from 4 to 30 days of age. The other 4 lambs, 3 of which died between 7 and 17 days of age, had low plasma triiodothyronine concentrations when studied at 4 and/or 14 days of age and their oxygen consumption at thermoneutrality was significantly lower than the normal group at 14 days. Shivering thermogenesis occurred at an earlier age and control of body temperature was less effective. It is concluded that triiodothyronine has an important role in the control of metabolic rate in the developing lamb even to meet modest changes in ambient temperature, and possibly directly in survival.  相似文献   

8.
9.
An attempt was made to demonstrate the importance of increased perfusion of cold tissue in core temperature afterdrop. Five male subjects were cooled twice in water (8 degrees C) for 53-80 min. They were then rewarmed by one of two methods (shivering thermogenesis or treadmill exercise) for another 40-65 min, after which they entered a warm bath (40 degrees C). Esophageal temperature (Tes) as well as thigh and calf muscle temperatures at three depths (1.5, 3.0, and 4.5 cm) were measured. Cold water immersion was terminated at Tes varying between 33.0 and 34.5 degrees C. For each subject this temperature was similar in both trials. The initial core temperature afterdrop was 58% greater during exercise (mean +/- SE, 0.65 +/- 0.10 degrees C) than shivering (0.41 +/- 0.06 degrees C) (P < 0.005). Within the first 5 min after subjects entered the warm bath the initial rate of rewarming (previously established during shivering or exercise, approximately 0.07 degrees C/min) decreased. The attenuation was 0.088 +/- 0.03 degrees C/min (P < 0.025) after shivering and 0.062 +/- 0.022 degrees C/min (P < 0.025) after exercise. In 4 of 10 trials (2 after shivering and 2 after exercise) a second afterdrop occurred during this period. We suggest that increased perfusion of cold tissue is one probable mechanism responsible for attenuation or reversal of the initial rewarming rate. These results have important implications for treatment of hypothermia victims, even when treatment commences long after removal from cold water.  相似文献   

10.
Experiments were done on eight young lambs to investigate the effects of hypoxemia on the body temperature, metabolic and cardiovascular responses to intravenous administration of a small dose of bacterial pyrogen (0.3 micrograms lipopolysaccharide extracted from Salmonella Abortus Equi; SAE). Each lamb was anaesthetized with halothane and prepared for sleep staging and measurements of cardiac output, arterial and mixed-venous haemoglobin oxygen saturations, body-core and ear-skin temperatures. Three experiments were done on each lamb, the first being done no sooner than three days after surgery. The first experiment consisted of establishing the thermal neutral environment during normoxemia (ie, environmental temperature at which total body oxygen consumption was minimal while body temperature was maintained) for each lamb. The second and third experiments were done at the lamb's thermoneutral environment as determined on day 1. One experiment was done during normoxemia (ie, control condition, SaO2 approximately 90%) and one experiment was done during hypoxemia (ie, experimental condition, SaO2 approximately 50%). Measurements were made during a control period and during one-minute experimental periods at 10 minute intervals for 120 minutes following administration of 0.3 micrograms of bacterial pyrogen in sterile saline. Administration of SAE produced a short-lived fever of about 0.8 degrees C in the normoxemic lambs, whereas no change in body-core temperature was observed in the hypoxemic lambs. During normoxemia, the increase in body-core temperature was preceded by peripheral vasoconstriction, the onset of shivering, and a surge in total body oxygen consumption. The increase in total body oxygen consumption was met primarily by an increase in total body oxygen extraction during the development of fever. Cardiac index, heart rate, and systemic oxygen transport increased during the peak body-core temperature response. Systemic arterial blood pressure did not change significantly during the febrile response; however, pulmonic arterial blood pressure increased. During hypoxemia, peripheral vasoconstriction and shivering occurred following administration of SAE, but there was no change in total body oxygen consumption or body-core temperature. Thus, our data provide evidence that hypoxemia alters the febrile response of young lambs to bacterial pyrogen. The precise mechanism remains to be determined.  相似文献   

11.
We evaluated the cooling rate of hyperthermic subjects, as measured by rectal temperature (T(re)), during immersion in a range of water temperatures. On 4 separate days, seven subjects (4 men, 3 women) exercised at 65% maximal oxygen consumption at an ambient temperature of 39 degrees C until T(re) increased to 40 degrees C (45.4 +/- 4.1 min). After exercise, the subjects were immersed in a circulated water bath controlled at 2, 8, 14, or 20 degrees C until T(re) returned to 37.5 degrees C. No difference in cooling rate was observed between the immersions at 8, 14, and 20 degrees C despite the differences in the skin surface-to-water temperature gradient, possibly because of the presence of shivering at 8 and 14 degrees C. Compared with the other conditions, however, the rate of cooling (0.35 +/- 0.14 degrees C/min) was significantly greater during the 2 degrees C water immersion, in which shivering was seldom observed. This rate was almost twice as much as the other conditions (P < 0.05). Our results suggest that 2 degrees C water is the most effective immersion treatment for exercise-induced hyperthermia.  相似文献   

12.
Participation of brown adipose tissue [through the action of the uncoupling protein-1 (UCP1)] in adaptive adrenergic nonshivering thermogenesis is recognized, but the existence of a response to adrenergic stimulation in UCP1-ablated mice implies that a mechanism for an alternative adaptive adrenergic thermogenesis may exist. Here, we have used UCP1-ablated mice to examine the existence of an alternative adaptive adrenergic nonshivering thermogenesis, examined as the oxygen consumption response to systemically injected norepinephrine into anesthetized or conscious mice acclimated to different temperatures. We confirm that UCP1-dependent adrenergic nonshivering thermogenesis is adaptive, but we demonstrate that the adrenergic UCP1-independent thermogenesis is not recruitable by cold acclimation. Thus, at least in the mouse, no other proteins or enzymatic pathways exist that can participate in or with time take over the UCP1 mediation of adaptive adrenergic nonshivering thermogenesis, even in the total absence of UCP1. UCP1 is thus the only protein capable of mediating cold acclimation-recruited adaptive adrenergic nonshivering thermogenesis.  相似文献   

13.
Chronic adrenergic activation leads to the emergence of beige adipocytes in some depots of white adipose tissue in mice. Despite their morphological similarities to brown adipocytes and their expression of uncoupling protein 1 (UCP1), a thermogenic protein exclusively expressed in brown adipocytes, the beige adipocytes have a gene expression pattern distinct from that of brown adipocytes. However, it is unclear whether the thermogenic function of beige adipocytes is different from that of classical brown adipocytes existing in brown adipose tissue. To examine the thermogenic ability of UCP1 expressed in beige and brown adipocytes, the adipocytes were isolated from the fat depots of C57BL/6J mice housed at 24°C (control group) or 10°C (cold-acclimated group) for 3 weeks. Morphological and gene expression analyses revealed that the adipocytes isolated from brown adipose tissue of both the control and cold-acclimated groups consisted mainly of brown adipocytes. These brown adipocytes contained large amounts of UCP1 and increased their oxygen consumption when stimulated with norepinephirine. Adipocytes isolated from the perigonadal white adipose tissues of both groups and the inguinal white adipose tissue of the control group were white adipocytes that showed no increase in oxygen consumption after norepinephrine stimulation. Adipocytes isolated from the inguinal white adipose tissue of the cold-acclimated group were a mixture of white and beige adipocytes, which expressed UCP1 and increased their oxygen consumption in response to norepinephrine. The UCP1 content and thermogenic ability of beige adipocytes estimated on the basis of their abundance in the cell mixture were similar to those of brown adipocytes. These results revealed that the inducible beige adipocytes have potent thermogenic ability comparable to classical brown adipocytes.  相似文献   

14.
The Tasmanian bettong (Bettongia gaimardi, a marsupial) is a rat-kangaroo that increases nonshivering thermogenesis (NST) in response to norepinephrine (NE). This study attempted to assess whether brown adipose tissue (BAT), a specialized thermogenic effector, is involved in NST in the bettong. Regulatory NST, indicated by resting oxygen consumption (Vo2) of the whole body, was measured under conscious conditions at 20 degrees C with various stimuli: cold (4 degrees -5 degrees C) or warm (25 degrees C) acclimation, NE injection, and the beta3-adrenoceptor agonist (BRL) 37344. In line with the functional studies in vivo, the presence of BAT was evaluated by examining the expression of the uncoupling protein 1 (UCP1) with both rat cDNA and oligonucleotide probes. Both NE and BRL 37344 significantly stimulated NST in the bettong. After cold acclimation of the animals (at 4 degrees -5 degrees C for 2 wk), the resting Vo2 was increased by 15% and the thermogenic effect of NE was enhanced; warm-acclimated animals showed a slightly depressed response. However, no expression of UCP1 was detected in bettongs either before or after cold exposure (2 wk). These data suggest that the observed NST in the marsupial bettong is not attributable to BAT.  相似文献   

15.
To determine whether urban circumpolar residents show seasonal acclimatisation to cold, thermoregulatory responses and thermal perception during cold exposure were examined in young men during January-March (n=7) and August-September (n=8). Subjects were exposed for 24 h to 22 and to 10 degrees C. Rectal (T(rect)) and skin temperatures were measured throughout the exposure. Oxygen consumption (VO(2)), finger skin blood flow (Q(f)), shivering and cold (CDT) and warm detection thresholds (WDT) were assessed four times during the exposure. Ratings of thermal sensations, comfort and tolerance were recorded using subjective judgement scales at 1-h intervals. During winter, subjects had a significantly higher mean skin temperature at both 22 and 10 degrees C compared with summer. However, skin temperatures decreased more at 10 degrees C in winter and remained higher only in the trunk. Finger skin temperature was higher at 22 degrees C, but lower at 10 degrees C in the winter suggesting an enhanced cold-induced vasoconstriction. Similarly, Q(f) decreased more in winter. The cold detection threshold of the hand was shifted to a lower level in the cold, and more substantially in the winter, which was related to lower skin temperatures in winter. Thermal sensations showed only slight seasonal variation. The observed seasonal differences in thermal responses suggest increased preservation of heat especially in the peripheral areas in winter. Blunted vasomotor and skin temperature responses, which are typical for habituation to cold, were not observed in winter. Instead, the responses in winter resemble aggravated reactions of non-cold acclimatised subjects.  相似文献   

16.
Reptiles whose sex is determined by incubation temperature typically exhibit all-male or all-female sex ratios over a wide range of incubation temperatures. The question arises as to whether the various all-female temperatures (or the various all-male temperatures) are equivalent in their "potency", or capacity to effect female determination. In map turtles, warm incubation temperatures produce all females and cool ones produce all males. We compared sex determining potencies of two all-female temperatures, 31 degrees C and 32.5 degrees C, by incubating eggs first at a male-producing temperature (26 degrees C) and then shifting them to the warm temperatures. The resulting sex ratio was significantly more male biased in the 26 degrees C----31 degrees C shift than in the 26 degrees C----32.5 degrees C shift, indicating that 32.5 degrees C has the greater female potency. These results point to the possibility that sex determination depends on a quantitative rather than qualitative level of gene expression.  相似文献   

17.
Effects of dystocia on rectal temperature and serum cortisol and glucose concentrations, were studied in neonatal calves exposed to 0 degree C. Primiparous dams were observed continuously during parturition and if Stage II (labor) was not completed within 2 h after appearance of the allantochorion, delivery was completed with obstetrical assistance. Parturitions were scored (CDS) for difficulty and obstetric assistance required: CDS 1, no assistance (n = 8); CDS 2, minor manual assistance (n = 7); CDS 3, use of a mechanical calf puller (n = 5); CDS 4, cesarean section (n = 6). A blood sample, rectal temperature, and body weight were obtained within 30 min after birth. Calves were then fed 38 degrees C pooled colostrum, muzzled to prevent suckling, and placed back with their dam in a heated (22 degrees C) barn. At 4 h of age an indwelling jugular catheter was inserted. At 5 h of age calves were placed in a 0 degree C room for 140 min and blood samples and rectal temperatures were obtained every 10 or 20 min. A shivering score (1 = no shivering; 2 = moderate shivering; 3 = intense shivering) was assigned at each sampling time. Rectal temperatures were higher (P < 0.01) in CDS 1, 2 and 4 calves (39.0, 39.3, and 39.0 +/- .02 degrees C, respectively) than in calves with CDS 3 (38.3 +/- 0.02 degrees C) and were affected by duration of cold exposure (time; P < 0.01). Shivering was not affected by CDS but was affected by time (P < 0.01). Glucose concentrations were higher (P < 0.01) in CDS 3 calves (110.1 +/- 1.6 mg/dL) than in CDS 1, 2, or 4 calves (77.2, 86.4, and 89.0 +/- 1.3 mg/dL, respectively) and changed over time (P < 0.01). Cortisol concentrations were higher in CDS 1 calves (80.0 +/- 1.7 ng/mL) than in CDS 2, 3 or 4 calves (62.7, 58.2, and 57.7 +/- 2.0 ng/mL, respectively) and were affected by time (P < 0.01). We conclude that severe dystocia (CDS 3) resulted in lower calf rectal temperature, reduced serum cortisol, and increased serum glucose which could affect the ability of the calf to withstand cold stress. Minor dystocia did not cause and timely cesarean delivery prevented, the physiological aberrations encountered in severe dystocia.  相似文献   

18.
The purpose of this study was to evaluate the effect of exercise on the subsequent post-exercise thresholds for vasoconstriction and shivering measured during water immersion. On 2 separate days, seven subjects (six males and one female) were immersed in water (37.5 degrees C) that was subsequently cooled at a constant rate of approximately 6.5 degrees C x h(-1) until the thresholds for vasoconstriction and shivering were clearly established. Water temperature was then increased to 37.5 degrees C. Subjects remained immersed for approximately 20 min, after which they exited the water, were towel-dried and sat in room air (22 degrees C) until both esophageal temperature and mean skin temperature (Tsk) returned to near-baseline values. Subjects then either performed 15 min of cycle ergometry (at 65% maximal oxygen consumption) followed by 30 min of recovery (Exercise), or remained seated with no exercise for 45 min (Control). Subjects were then cooled again. The core temperature thresholds for both vasoconstriction and shivering increased significantly by 0.2 degrees C Post-Exercise (P < 0.05). Because the Tsk at the onset of vasoconstriction and shivering was different during Pre- and Post-Exercise Cooling, we compensated mathematically for changes in skin temperatures using the established linear cutaneous contribution of skin to the control of vasoconstriction and shivering (20%). The calculated core temperature threshold (at a designated skin temperature of 32.0 degrees C) for vasoconstriction increased significantly from 37.1 (0.3) degrees C to 37.5 ( 0.3) degrees C post-exercise (P < 0.05). Likewise, the shivering threshold increased from 36.2 (0.3) degrees C to 36.5 (0.3) degrees C post-exercise (P < 0.05). In contrast to the post-exercise increase in cold thermal response thresholds, sequential measurements demonstrated a time-dependent similarity in the Pre- and Post-Control thresholds for vasoconstriction and shivering. These data indicate that exercise has a prolonged effect on the post-exercise thresholds for both cold thermoregulatory responses.  相似文献   

19.
《Organogenesis》2013,9(3):182-187
We have shown that there is significant disparity in the expression of uncoupling proteins (UCP) 2 and 3 between modern-commercial and ancient-Meishan porcine genotypes, commercial pigs also have higher plasma triiodothyronine (T3) in on the first day of life. T3 and the sympathetic nervous system are both known to regulate UCPs in rodents and humans; their role in regulating these proteins in the pig is unknown. This study examined whether thyroid hormone manipulation or administration of a selective β3 adrenoceptor agonist (ZD) influenced plasma hormones, colonic temperature and UCP expression in adipose tissue of two breeds of pig. To mimic the differences observed in thyroid hormone status, piglets from Meishan and commercial litters were randomly assigned to control (1 ml/kg water), T3 (10 mg/kg) (Meishan only), methimazole (a commonly used antithyroid drug) (50 mg/kg) (commercial only) or ZD (10 mg/kg) oral administration for the first 4 days of postnatal life. Adipose tissue UCP2/3 mRNA abundance was measured on day 4 using PCR. T3 administration raised plasma T3 concentrations and increased colonic temperature on day 4. UCP3 mRNA abundance was higher in Meishan, than commercial piglets and was downregulated following T3 administration. Irrespective of genotype, ZD increased UCP2 mRNA abundance. Expression of neither UCP2 nor 3 was related to colonic temperature, regardless of treatment. In conclusion, we have demonstrated a dissociation between thyroid hormones and the sympathetic nervous system in the regulation of UCPs in porcine adipose tissue. We have also suggested that expression of adipose tissue UCP2 and 3 are not related to body temperature in piglets.  相似文献   

20.
This study investigates the role of metabolic rate and of vagal airway mechanisms in sustaining rhythmic breathing in the developing lamb. Fifteen lambs were prepared, at 2 days of age under fluothane anaesthesia, for sequential studies at 4, 14, 30, 45, and 55 days of age. At each age they were maintained at an ambient temperature of 5, 10, 15, 20, 25 and 30 degrees C for at least one hour before measurements were made during N-REM sleep. In 6 lambs at 4 days and in all lambs at older ages the upper airway was by-passed (by opening a tracheal window) for 10-15 minutes at each ambient temperature. Oxygen consumption was unaffected by upper airway by-pass and there were no consistent changes in mean breathing frequency or amplitude, with the exception of shifts to panting at warm ambient temperatures. Breathing pattern was unaffected by upper airway by-pass in lambs at 4 days of age, but at older ages loss of regularity of breathing frequently occurred (up to 47% of 30 days-old lambs at 25 degrees C). This was related to the fall in oxygen consumption with age and to basal values at thermoneutrality, and coincided with lower respiratory rates and increased use of expiratory laryngeal braking. Periodic breathing (and apnea) of a fixed cycle length (9.3 +/- 0.36 s) was a common feature (62%) of the observed breathing dysrhythmia. In young lambs high metabolic rate sustained high frequency rhythmic breathing which was unaffected by upper airway by-pass.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号