首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
von Willebrand factor (vWf) is a multimeric plasma glycoprotein that functions in hemostasis as the initiator of platelet adhesion to damaged blood vessels and as the carrier of Factor VIII (FVIII). Montgomery et al. (Montgomery, R.R., Hathaway, W.E., Johnson, J., Jacobsen, L., and Muntean, W. (1982) Blood 60, 201-207) reported a variant of von Willebrand disease characterized by the abnormal interaction between FVIII and a defective vWf. To identify the molecular basis of this abnormal interaction, we isolated platelet RNA from members of one of the affected families and determined the nucleotide sequence of the FVIII-binding domain encoded by the vWf mRNA. A single G to A transition at nucleotide 2561 was linked with disease expression and results in the substitution of Gln for Arg91 in mature vWf. A restriction fragment containing this mutation was introduced into a full-length vWf expression vector, and both wild type and mutant vWf were expressed in COS-7 cells. In a solid-phase binding assay, expressed vWf was captured with anti-vWf monoclonal antibody AVW1 and then incubated with 6.25-400 milliunits of recombinant FVIII. After washing, vWf-bound FVIII activity was determined with a chromogenic assay. Mutant vWf showed reduced binding of FVIII compared with wild type, suggesting that the substitution of Gln for Arg91 is the likely basis for the abnormal vWf/FVIII interaction in this von Willebrand disease variant.  相似文献   

2.
We have constructed new B domain deletion derivatives of human factor VIII (FVIII) by manipulating the cDNA using recombinant DNA techniques. One of these new derivatives, FVIII delta II, in which amino acids 771(pro)-1666(asp) have been deleted, no longer contains the protease cleavage site at amino acid position 1648(arg)-1649(glu) known to be involved in the initial step of FVIII processing. We have expressed this molecule in both baby hamster kidney (BHK) 21 cells using the vaccinia virus (VV) expression system and have established Chinese hamster ovary (CHO) derived permanent cell lines expressing either recombinant (r)FVIII or FVIII delta II. The characteristics of FVIII delta II have been compared to those of rFVIII and/or plasma derived (pd) FVIII. FVIII delta II has the following properties: (i) it exhibits FVIII procoagulant activity; (ii) it is expressed at 5-fold higher levels than is the complete molecule in comparable systems; (iii) it migrates for the most part as a single major band on SDS-PAGE, in contrast to the complete molecule; (iv) it is activated to a greater extent by thrombin than is either rFVIII or pdFVIII; and (v) it retains the ability to bind von Willebrand factor (vWf).  相似文献   

3.
von Willebrand factor (vWf) is a multimeric adhesive glycoprotein that serves as a carrier for factor VIII in plasma. Although each vWf subunit displays a high affinity binding site for factor VIII in vitro, in plasma, only 2% of the vWf sites for factor VIII are occupied. We investigated whether interaction of plasma proteins with vWf or adhesion of vWf to collagen may alter the affinity or availability of factor VIII-binding sites on vWf. When vWf was immobilized on agarose-linked monoclonal antibody, factor VIII bound to vWf with high affinity, and neither the affinity nor binding site availability was influenced by the presence of 50% plasma. Therefore, plasma proteins do not alter the affinity or availability of factor VIII-binding sites. In contrast, when vWf was immobilized on agarose-linked collagen, its affinity for factor VIII was reduced 4-fold, with KD increasing from 0.9 to 3.8 nM. However, one factor VIII-binding site remained available on each vWf subunit. A comparable reduction in affinity for factor VIII was observed when vWf was a constituent of the subendothelial cell matrix and when it was bound to purified type VI collagen. In parallel with the decreased affinity for factor VIII, collagen-bound vWf displayed a 6-fold lower affinity for monoclonal antibody W5-6A, with an epitope composed of residues 78-96 within the factor VIII-binding motif of vWf. We conclude that collagen induces a conformational change within the factor VIII-binding motif of vWf that lowers the affinity for factor VIII.  相似文献   

4.
Factor VIII, a cofactor of the intrinsic clotting pathway, is proteolytically inactivated by the vitamin K-dependent serine protease, activated protein C in a reaction requiring Ca2+ and a phospholipid surface. Factor VIII was inactivated 15 times faster than factor VIII in complex with either von Willebrand factor (vWf) or the large homodimeric fragment, SPIII (vWf residues 1-1365). Free factor VIII or factor VIII in complex with a smaller fragment, SPIII-T4 (vWf residues 1-272), were inactivated at the same rate, suggesting that this effect was dependent upon the size of factor VIII-vWf complex rather than changes in factor VIII brought about by occupancy of the vWf-binding site. Thrombin cleavage of the factor VIII light chain to remove the vWf-binding site eliminated the protective effects of vWf. In the absence of phospholipid, high levels of the protease inactivated both free and vWf-bound factor VIII at equivalent rates. Using the same conditions, isolated heavy chains and the heavy chains of factor VIII were proteolyzed at similar rates. Taken together, these results suggested that, in the absence of phospholipid, inactivation of factor VIII is independent of factor VIII light chain and further suggest that vWf did not mask susceptible cleavage sites in the cofactor. Solution studies employing fluorescence energy transfer using coumarin-labeled factor VIII (fluorescence donor) and synthetic phospholipid vesicles labeled with octadecyl rhodamine (fluorescence acceptor) indicated saturable binding and equivalent extents of donor fluorescence quenching for factor VIII alone or when complexed with SPIII-T4. However, complexing of factor VIII with either vWf or SPIII eliminated its binding to the phospholipid. Since a phospholipid surface is required for efficient catalysis by the protease, these results suggest that vWf protects factor VIII by inhibiting cofactor-phospholipid interactions.  相似文献   

5.
A Casonato  F Fabris  M Boscaro  A Girolami 《Blut》1987,54(5):281-288
Factor VIII/von Willebrand factor (VIII/vWf) related properties were studied in twenty six patients with thrombocytopenia. Fifteen patients were affected by idiopathic thrombocytopenic purpura (ITP) and 11 patients by thrombocytopenia of a different nature or non-ITP (n-ITP). All patients showed an enhancement of platelet associated IgG (PAIgG). A significant increase of factor VIII ristocetin cofactor (VIII R: RCoF) and factor VIII related antigen (VIII R:Ag) was found in ITP patients while normal values were observed for factor VIII coagulant (VIII:C). All factor VIII/vWf components, on the contrary, were increased in n-ITP group with a prevalence of VIII R:RCoF as observed in ITP group even though with lower mean values. Multimeric analysis of VIII/vWf demonstrated a higher concentration of all multimeric components, with major representation of higher molecular weight multimers (HMWM) in patients of both groups. Two patients were studied before and after improvement in platelet count. A decrease of vWf related properties (VIII R:RCoF and VIII R:Ag) concomitant with the increase in platelet count was found. In n-ITP patients a statistical correlation between VIII R:RCoF and PAIgG was also observed while no correlation was found between other factor VIII/vWf components and PAIgG both in ITP and n-ITP patients.  相似文献   

6.
Factor VIII circulates in noncovalent complex with von Willebrand factor (vWf). The topography of this complex was evaluated by fluorescence energy transfer using factor VIII subunits modified with N-(1-pyrenyl)maleimide (NPM; fluorescence donor) and vWf-derived fragments modified with 7-diethylamino-3-[4'-maleimidylphenyl]-4-methyl coumarin (CPM; fluorescence acceptor). Results from a previous study indicated an interfactor VIII subunit distance of 20 A separating Cys528 and Cys1858 in the factor VIII heavy and light chains, respectively (Fay, P.J., and Smudzin, T. M. (1989) J. Biol. Chem. 264, 14005-14010). Fluorophore modification of the vWf SPIII homodimer (residues 1-1365) indicated multiple attachment sites at Cys126/135/1360 as determined from sequence analysis of fluorescent tryptic peptides derived from the modified protein. Based upon donor quenching data, an interfluorophore distance of approximately 28 A was calculated separating NPM-factor VIII light chain or factor VIII reconstituted from NPM-light chain plus unmodified heavy chain, from CPM-SPIII. A similar value (29 A) was obtained for NPM-light chain paired with CPM-SPIII-T4 (vWf residues 1-272), suggesting that donor quenching resulted primarily from modified residue(s) Cys126/135 in the acceptor. No energy transfer was observed for the NPM-heavy chain/CPM-SPIII pairing. However, when NPM-heavy chain was reassociated with unmodified light chain prior to reaction with CPM-SPIII or CPM-SPIII-T4, energy transfer was observed with calculated interfluorophore distances of approximately 31 and 34 A, respectively. Levels of acceptor resulting in maximal donor quenching suggested an equimolar stoichiometry of factor VIII (light chain)/vWf fragment in the reconstituted complexes. These results indicate a close spatial arrangement among the A3 domain of factor VIII light chain, the A2 domain of factor VIII heavy chain, and the NH2 terminus region of vWf in the factor VIII-vWf complex.  相似文献   

7.

Background

Point mutations resulting in reduced factor VIII (FVIII) binding to von Willebrand factor (VWF) are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood.

Methodology/Principal Findings

We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser) to severe (Tyr1680Phe, Ser2119Tyr) VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH.

Conclusions

Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo.  相似文献   

8.
von Willebrand factor (vWf) which serves as a necessary factor for platelet adhesion to damaged vascular subendothelium can bind to the platelet surface via two distinct receptors. Ristocetin promotes the binding of vWf to platelet membrane glycoprotein lb, whereas platelet activation by thrombin supports binding to the glycoprotein IIb/IIIa complex. Platelet adhesion to vWf substrates mediated by these two mechanisms has been compared. Both mechanisms supported similar rates of adhesion to the substrates. Whereas adhesion via the ristocetin-dependent mechanism did not require divalent cations, adhesion mediated by the thrombin-dependent mechanism required the presence of divalent cations. Modification of vWf amino groups markedly impaired the ability of the protein to support ristocetin-dependent adhesion but did not alter its ability to support thrombin-enhanced adhesion. Reduction and carboxymethylation nearly abolished the ability of vWf to support adhesion via the ristocetin-dependent mechanism, but did not substantially impair its ability to support thrombin-enhanced adhesion. Short synthetic peptides containing the sequence Arg-Gly-Asp-Ser effectively inhibited thrombin-dependent platelet adhesion to vWf substrates but had no effect on ristocetin-dependent adhesion. Substrates composed of synthetic peptides containing the Arg-Gly-Asp-Ser sequence supported thrombin-dependent adhesion but did not support ristocetin-dependent adhesion. Scanning electron microscopic examination revealed that platelets adherent via the ristocetin-dependent mechanism almost uniformly adopted a flattened and fully spread appearance. In contrast, the thrombin-enhanced mechanism of adhesion supported only a limited degree of platelet spreading on the vWf substrate.  相似文献   

9.
Subunit composition of oligomeric human von Willebrand factor   总被引:10,自引:0,他引:10  
The oligomerization of human endothelial cell-synthesized von Willebrand factor (vWf) has been studied by gel chromatography in columns of Sephacryl S-500 and by discontinuous agarose gel electrophoresis. A quantitative recovery of high Mr vWf oligomers has been obtained after binding to a monoclonal anti-vWf-Sepharose adduct. This reagent has been used to analyze gel filtration chromatographic elution profiles of [35S]methionine-labeled culture medium and cell lysate. It was determined that high Mr oligomers are present in endothelial cell lysates as well as in the medium overlying these cells and are composed of Mr 225,000 subunits. When vWf oligomers were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of a reducing agent, the Mr 240,000 subunit (provWf) was not observed to oligomerize beyond the dimer stage to a significant degree. Therefore, vWf oligomerization appears to be facilitated by conversion of provWf subunits to mature vWf subunits, most likely by proteolytic removal of sequences unique to the intracellular precursor.  相似文献   

10.
Factor VIII functions in an enzyme complex upon the activated platelet membrane where phosphatidylserine exposure correlates with expression of receptors for factor VIII. To evaluate the specificity of phosphatidylserine-containing membrane binding sites for factor VIII, we have developed a novel membrane model in which phospholipid bilayers are supported by glass microspheres (lipospheres). The binding of fluorescein-labeled factor VIII to lipospheres with membranes of 15% phosphatidylserine was equivalent to binding to phospholipid vesicles (KD = 4.8 nM). Purified von Willebrand factor (vWf), a carrier protein for factor VIII, decreased membrane binding of factor VIII with a Ki of 10 micrograms/ml. Likewise, normal plasma decreased bound factor VIII by more than 90% whereas plasma lacking vWf decreased the binding of factor VIII by only 20%. Proteolytic activation of factor VIII by thrombin, which releases factor VIII from vWf, increased liposphere binding in the presence of vWf and in the presence of normal plasma. Although factor V is homologous to factor VIII and binds to lipospheres with the same affinity, purified factor V was not an efficient competitor for the membrane binding sites of factor VIII. These results indicate that phosphatidylserine-containing membrane sites have sufficient specificity to select thrombin-activated factor VIII from the range of phospholipid-binding proteins in plasma.  相似文献   

11.
Purified human factor FVIII (FVIII; 6000-8000 U/mg) was radiolabeled and bound to immobilized von Willebrand factor (vWF). The complex was incubated with human thrombin. Thrombin induced a release of 65% of the radioactivity initially bound. Released FVIII fragments and fragments remaining bound during incubation with thrombin were analyzed using gel electrophoresis. This led to the following observations. Released fragments largely consisted of Mr-70000 and Mr-50000 fragments; Mr-90000 and Mr-80000 fragments were only found in the fractions remaining bound to vWF and decreased with time. In contrast to these digestion products of FVIII, the Mr-42000 heavy-chain fragment remained bound to vWF, comprising the larger part of the radioactivity after a 2-h incubation. No thrombin-induced cleavages were observed in vWF. Furthermore, vWF-coated wells preincubated with thrombin were still able to bind 125I-FVIII. These results implicate a new concept for the activation of vWF-bound FVIII. Activation is a multistep process in which several cleavages are necessary to produce and release a coagulant-active FVIII molecule (FVIIIa), which is probably an Mr-50000/70000 heterodimer. Inactivation of FVIIIa is likely to be the result of a nonproteolytic dissociation due to loss of the joining divalent cation(s).  相似文献   

12.
Endothelial cells store the multimeric adhesive glycoprotein von Willebrand factor (vWf), which promotes the formation of a platelet plug at the site of vessel injury. To investigate the packaging of vWf into the granules called Weibel-Palade bodies, we expressed pro-vWf cDNA and cDNA lacking the prosequence in a variety of cell lines. Storage granules formed only in cells that contain a regulated pathway of secretion. Furthermore, packaging required the prosequence. Pro-vWf, lacking the C-terminal region involved in interchain disulfide bonding, formed granules. We conclude that the signal for storage is universal in that an adhesive glycoprotein can be stored by a hormone-secreting cell; the storage of vWf is independent of its covalent multimeric structure; the unusual rod shape of Weibel-Palade bodies is due to vWf; and the vWf propolypeptide is necessary for the formation of vWf storage granules.  相似文献   

13.
BACKGROUND: Hemophilia A is a congenital disorder caused by a deficiency of the blood-clotting factor VIII (FVIII) and is an attractive candidate for gene therapy. Most of the studies have only explored the potential of hepatocytes and muscle cells as the targets for gene transfer. Attempts to transfer the genes into hematopoietic cells have so far been mostly unsuccessful due to inefficiency of most viral vectors to transduce these cells and the supposed inability of the cells to express FVIII. METHODS: We demonstrate the generation of an engineered Epstein-Barr virus (EBV) vector with a BAC backbone that has the unique capacity to carry either the full-length FVIII cDNA or its B-domain-deleted form; a modified version of the vector that carries B-domain-deleted FVIII along with the von Willebrand factor (vWF) cDNA or the reporter gene DsRed2 was also used. All these vectors have been safety modified with viral thymidine kinase cDNA to transduce human B-cells in culture. RESULTS: Low-level expression of FVIII in the order of 5-8 ng FVIIIC/ml were observed in the cells stably transduced with full-length FVIII, while cells with the B-domain-deleted version expressed 8-16 ng FVIIIC/ml. Expression of vWF and B-domain-deleted FVIII resulted in a moderate expression of 18-30 ng FVIIIC/ml. Long-term expression for 12-16 weeks was observed in these cells regardless of selection pressure. CONCLUSIONS: These results support the development of an episomal engineered EBV vector for treatment of hemophilia A using the hematopoietic cells as a target for providing immediate secretion of functionally active product in the circulating bloodstream.  相似文献   

14.
Factor VIII (FVIII) is a glycoprotein that plays an important role in the intrinsic pathway of coagulation. In circulation, FVIII is protected upon binding to von Willebrand factor (VWF), a chaperone molecule that regulates its half-life, distribution, and activity. Despite the biological significance of this interaction, its molecular mechanisms are not fully characterized. We determined the equilibrium and activation thermodynamics of the interaction between FVIII and VWF. The equilibrium affinity determined by surface plasmon resonance was temperature-dependent with a value of 0.8 nM at 35 °C. The FVIII-VWF interaction was characterized by very fast association (8.56 × 10(6) M(-1) s(-1)) and fast dissociation (6.89 × 10(-3) s(-1)) rates. Both the equilibrium association and association rate constants, but not the dissociation rate constant, were dependent on temperature. Binding of FVIII to VWF was characterized by favorable changes in the equilibrium and activation entropy (TΔS° = 89.4 kJ/mol, and -TΔS(++) = -8.9 kJ/mol) and unfavorable changes in the equilibrium and activation enthalpy (ΔH° = 39.1 kJ/mol, and ΔH(++) = 44.1 kJ/mol), yielding a negative change in the equilibrium Gibbs energy. Binding of FVIII to VWF in solid-phase assays demonstrated a high sensitivity to acidic pH and a sensitivity to ionic strength. Our data indicate that the interaction between FVIII and VWF is mediated mainly by electrostatic forces, and that it is not accompanied by entropic constraints, suggesting the absence of conformational adaptation but the presence of rigid "pre-optimized" binding surfaces.  相似文献   

15.
In 44 consecutive patients with systemic sclerosis (SSc), plasma concentrations of von Willebrand factor (vWf) were higher than those of the vWf propeptide, but the propeptide showed less variability within patient subgroups. Higher values of the propeptide were observed in patients with early pulmonary involvement. A closer correlation of the propeptide than of vWf to biochemical markers of activity was also evident. Our results suggest that the propeptide, despite a shorter circulating half-time and lower plasma concentrations than vWf, is more useful in the assessment of disease activity in SSc.  相似文献   

16.
Factor VIII (FVIII) is activated by proteolytic cleavages with thrombin and factor Xa (FXa) in the intrinsic blood coagulation pathway. The anti-C2 monoclonal antibody ESH8, which recognizes residues 2248-2285 and does not inhibit FVIII binding to von Willebrand factor or phospholipid, inhibited FVIII activation by FXa in a clotting assay. Furthermore, analysis by SDS-polyacrylamide gel electrophoresis showed that ESH8 inhibited FXa cleavage in the presence or absence of phospholipid. The light chain (LCh) fragments (both 80 and 72 kDa) and the recombinant C2 domain dose-dependently bound to immobilized anhydro-FXa, a catalytically inactive derivative of FXa in which dehydroalanine replaces the active-site serine. The affinity (K(d)) values for the 80- and 72-kDa LCh fragments and the C2 domain were 55, 51, and 560 nM, respectively. The heavy chain of FVIII did not bind to anhydro-FXa. Similarly, competitive assays using overlapping synthetic peptides corresponding to ESH8 epitopes (residues 2248-2285) demonstrated that a peptide designated EP-2 (residues 2253-2270; TSMYVKEFLISSSQDGHQ) inhibited the binding of the C2 domain or the 72-kDa LCh to anhydro-FXa by more than 95 and 84%, respectively. Our results provide the first evidence for a direct role of the C2 domain in the association between FVIII and FXa.  相似文献   

17.
L A Sporn  V J Marder  D D Wagner 《Cell》1986,46(2):185-190
von Willebrand factor (vWf) secreted constitutively by human endothelial cells was compared to that released from Weibel-Palade bodies after stimulation. The majority of constitutively secreted molecules were dimeric and contained both pro-vWf and mature subunits. In contrast, the vWf released by the calcium ionophore A23187 or thrombin consisted of only very large multimers of mature subunits. The large multimers are known to be more active in in vitro platelet binding assays, and their absence in vivo results in a bleeding disorder. Endothelial cells therefore concentrate a special subclass of very large and biologically potent vWf multimers in Weibel-Palade bodies, presumably available for release in response to vascular injury.  相似文献   

18.
Five different guanidinium (Gu)-derivatized agarose matrices were investigated for their potential in chromatographically resolving the Factor VIII/von Willebrand complex, VIII/vWf, fibrinogen, Fg, and fibronectin, Fn, from cryoprecipitate. Using conventional NaCl gradient methodology it was found that the order of elution of specific plasma proteins, and the yield of VIII/vWf, varied with the methods used to derivatize the agarose beads. Good yields of VIII:C (generally 30-45%) were obtained with Gu-matrices prepared by bis-oxirane coupling procedures. Cryoprecipitate binding studies showed that the capacity of Gu-Sepharose 4B, prepared by isourea modification of amino-Sepharose 4B, was 36 units VIII/vWf per ml matrix. The product, depleted of both Fg and Fn, had a specific activity of 2 units VIII:C per mg total protein, (yield 100% vWf:Ag and 47% VIII:C).  相似文献   

19.
The plasma concentration of von Willebrand factor (vWf) shows a very wide range in individuals without bleeding disorders. In a twin study we found that 60% of the variance of the plasma concentration of vWf is due to genetic factors. Individuals with AB0 blood group 0 have a lower concentration of vWf than individuals with blood group A, B or AB. Thirty percent of the genetic variance was due to an effect of the AB0 locus. Since the Lewis substances show great structural similarity to the ABH blood group substances we compared the vWf concentration in individuals with and without the Lea antigen on the red cell surface. Individuals lacking the Lea antigen had a lower vWf concentration than individuals who had this antigen. Le(a+b-) people are nonsecretors and Le(a-b+) people are secretors of ABH substance. The lowest vWf concentration was found in blood group 0 secretors. Both the AB0 locus and the Secretor locus may be major loci for the determination of the plasma concentration of vWf.  相似文献   

20.
Liposomes with covalently bound recombinant fragments of platelet membrane glycoprotein Ibalpha that retain the von Willebrand factor (vWf)-binding function (rGPIbalpha-liposomes) were prepared. Their interactions with an immobilized vWf surface under flow conditions were evaluated with a recirculating flow chamber, mounted on an epifluorescence microscope, which allows real-time visualization of fluorescence-labeled liposomes interacting with the surface. The interaction of rGPIbalpha-liposomes with the vWf surface was directly related to shear rate. At high densities of rGPIbalpha and vWf, rGPIbalpha-liposomes establishing contact with the vWf surface exhibited continuous displacement with decreased velocity relative to the hydrodynamic flow, depending on receptor density and matrix concentration. At lower densities of rGPIbalpha and vWf, rGPIbalpha-liposomes stopped only transiently, in the millisecond range, on the surface. This is the first study to demonstrate that the targeting of rGPIbalpha-liposomes is specific to the vWf surface under flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号