首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interconversion between energetically favored molecular conformations must proceed through less favored intermediate states. Thus, a knowledge of the nucleotide furanose ring conformations, other than the crystallographically well-determined ones, are of interest in investigating nucleotide conformational energies and dynamics. The sugar ring flexibility affects the conformation and dynamics of the monomer and determines the range of feasible nucleic acid secondary and tertiary structures. We have generated furanose geometries for varying amplitudes of pucker over its entire range of pseudorotation by making use of a ring closure procedure and the empirical dependence of endocyclic bond lengths and bond angles on sugar pucker. Atomic coordinates are tabulated here for the furanose ring at pseudorotation phase angle intervals of 9 degrees for the average amplitude (tau m) of pucker of 39 degrees as well as for decreased (20 degrees and 30 degrees) and increased (44 degrees) values of tau m. However, the coordinates for any values of P and tau m can be readily calculated.  相似文献   

2.
Abstract

Interconversion between energetically favored molecular conformations must proceed through less favored intermediate states. Thus, a knowledge of the nucleotide furanose ring conformations, other than the crystallographically well-determined ones, are of interest in investigating nucleotide conformational energies and dynamics. The sugar ring flexibility affects the conformation and dynamics of the monomer and determines the range of feasible nucleic acid secondary and tertiary structures. We have generated furanose geometries for varying amplitudes of pucker over its entire range of pseudorotation by making use of a ring closure procedure and the empirical dependence of endocyclic bond lengths and bond angles on sugar pucker. Atomic coordinates are tabulated here for the furanose ring at pseudorotation phase angle intervals of 9° for the average amplitude (τm) of pucker of 39° as well as for decreased (20° and 30°) and increased (44°) values of τm. However, the coordinates for any values of P and τm can be readily calculated.  相似文献   

3.
The dimensions and shapes of the furanose rings in nucleic acids   总被引:7,自引:1,他引:6       下载免费PDF全文
A survey was made of the geometry of furanose rings in beta-nucleotides and beta-nucleosides (as monomers related to nucleic acids) for which structures have been determined by X-ray crystallography. Mean values, and estimated standard deviations from them, were calculated for bond-lengths, bond-angles and conformation-angles. For parameters with values dependent on ring-puckering, separate calculations were made for each ring type. (The rings are puckered in one of three conformations: C-2- or C-3-endo or C-3-exo; C-2-exo has not been observed.) The results were used to compute standard furanose rings with C-2-endo, C-3-endo and C-3-exo conformations for use in nucleic acid molecular model-building. The survey also showed that the only other conformation-angle in nucleotides dependent on the furanose ring conformation corresponds to the relative orientation of the purine (or pyrimidine) base and the ring.  相似文献   

4.
Correlated variations of bond lengths in pseudorotating furanose rings are investigated by a theoretical method. At first, matrix equations are proposed to determine the spatial coordinates of the ring atoms from the bond lengths, the bond angles, and the pseudorotation parameters. Secondly, a necessary functional form of the variations of the bond lengths of five-membered rings is derived from a consideration of symmetry. Finally, demonstrations are performed on a furanose ring whose bond angle variations have been precisely determined by experimental analyses. The resulting bond length variations are: delta Ri = beta icos(8/5 pi.(i-2)+2P) where delta Ri is the variation of the bond length between atoms i and i+1, P is the pseudorotation phase, and beta i is a negative constant about -0.01 A. These bond length variations are balanced on the apparent strains of the bond lengths and the bond angles.  相似文献   

5.
T Sato 《Nucleic acids research》1983,11(14):4933-4938
A set of pseudorotation coordinates is proposed for characterizing the puckering of the furanose ring. These are defined from the curvilinear displacements of the C1' and C4' atoms from the planar conformation. The present coordinates have some practical advantages over the ones currently used.  相似文献   

6.
Abstract

Correlated variations of bond lengths in pseudorotating furanose rings are investigated by a theoretical method. At first, matrix equations are proposed to determine the spatial coordinates of the ring atoms from the bond lengths, the bond angles, and the pseudorotation parameters. Secondly, a necessary functional form of the variations of the bond lengths of five-membered rings is derived from a consideration of symmetry. Finally, demonstrations are performed on a furanose ring whose bond angle variations have been precisely determined by experimental analyses. The resulting bond length variations are:

δRi = βiCos(8/5π · (i-2)+2P)

where δRi is the variation of the bond length between atoms i and i+1, P is the pseudorotation phase, and βiis a negative constant about ?0.01 Å. These bond length variations are balanced on the apparent strains of the bond lengths and the bond angles.  相似文献   

7.
Structural properties of biomolecules are dictated by their intrinsic conformational energetics in combination with environmental contributions. Calculations using high-level ab initio methods on the deoxyribonucleosides have been performed to investigate the influence of base on the intrinsic conformational energetics of nucleosides. Energy minima in the north and south ranges of the deoxyribose pseudorotation surfaces have been located, allowing characterization of the influence of base on the structures and energy differences between those minima. With all bases, chi values associated with the south energy minimum are lower than in canonical B-DNA, while chi values associated with the north energy minimum are close to those in canonical A-DNA. In deoxycytidine, chi adopts an A-DNA conformation in both the north and south energy minima. Energy differences between the A and B conformations of the nucleosides are <0.5 kcal/mol in the present calculations, except with deoxycytidine, where the A form is favored by 2.3 kcal/mol, leading the intrinsic conformational energetics of GC basepairs to favor the A form of DNA by 1.5 kcal/mol as compared with AT pairs. This indicates that the intrinsic conformational properties of cytosine at the nucleoside level contribute to the A form of DNA containing predominately GC-rich sequences. In the context of a B versus Z DNA equilibrium, deoxycytidine favors the Z form over the B form by 1.6 kcal/mol as compared with deoxythymidine, suggesting that the intrinsic conformational properties of cytosine also contribute to GC-rich sequences occurring in Z DNA with a higher frequency than AT-rich sequences. Results show that the east pseudorotation energy barrier involves a decrease in the furanose amplitude and is systematically lower than the inversion barrier, with the energy differences influenced by the base. Energy barriers going from the south (B form) sugar pucker to the east pseudorotation barrier are lower in pyrimidines as compared with purines, indicating that the intrinsic conformational properties associated with base may also influence the sugar pseudorotational population distribution seen in DNA crystal structures and the kinetics of B to A transitions. The present work provides evidence that base composition, in addition to base sequence, can influence DNA conformation.  相似文献   

8.
The influence of conformational rearrangement of the furanose ring in DNA on its dipole moment is studied. The dipole moment of the deoxyribose molecule as a function of its puckered state is calculated by the quantum-mechanical method using the MINDO/3 approximation. The values of the dipole moment and its components are obtained at various magnitudes of the pseudorotation phase angle. The C3'-endo in equilibrium C2'-endo conformational transition of deoxyribose is shown to be accompanied by the change in the dipole moment up to 3D. The results obtained are used to explain the structural properties of the DNA hydration shell.  相似文献   

9.
A general procedure is described to treat the pseudorotation of the furanose ring in terms of a three-state conformational equilibrium. In addition to the principal n (C3'-endo) and s (C2'-endo) puckering domains, the unusual e (01'-endo) intermediate is included in the analysis. Each of these three conformational categories is represented by a blend of five closely related puckered forms rather than by a single rotational isomeric state. Using this model together with experimentally measured nmr coupling constants, the puckering populations of various nucleic acid analogs are estimated. The conventional two-state n/s equilibria is confirmed in ordinary ribose and deoxyribose systems. The e domain, however, is found to be of major importance in several chemically modified furanoses including certain pyrimidine deoxynucleosides damaged by radiation and various nucleosides and nucleotides forced by bulky substituents on the base into unusual syn glycosyl arrangements. The "free" pseudorotation of these modified systems is not detected by conventional two-state puckering analyses.  相似文献   

10.
Abstract

The influence of conformational rearrangement of the furanose ring in DNA on its dipole moment is studied. The dipole moment of the deoxyribose molecule as a function of its puckered state is calculated by the quantum-mechanical method using the MINDO/3 approximation. The values of the dipole moment and its components are obtained at various magnitudes of the pseudorotation phase angle. The C3′-endo = C2′-endo conformational transition of deoxyribose is shown to be accompanied by the change in the dipole moment up to 3D. The results obtained are used to explain the structural properties of the DNA hydration shell.  相似文献   

11.
12.
For the first time the mutarotation mechanism of furanose rings has been investigated, with and without solvent. The transformations from open-chain furanose to d-erythrose and d-threose have been studied at B3LYP/6-311++G(d,p) and G3MP2B3 levels, in vacuum and in solution through continuum solvation models. We studied the catalytic influence of one, two or three water molecules, as well as simplified models of carbohydrates, that is, methanol and 1,2-ethanediol. Water molecules significantly reduce the energy barrier of the hemiacetal formation occurring between the open-chain and furanose configurations. The energy barrier is optimally reduced by two water molecules. Methanol yields a smaller transition state barrier than the one obtained with a single water molecule. In contrast, 1,2-ethanediol does not provide a lower transition state compared to the barrier in the presence of two water molecules.  相似文献   

13.
To study the structure-biological effect correlation in the series of nucleoside analogues containing deazapurines, a number of 2-R-benzimidazole 1-beta-D-ribofuranosides (R = H, CF3, SCF3, CH2SCF3, CH2Ph, CH2CN) have been prepared by the modified silyl method. On the basis of CD and PMR data it was shown that the compounds exist in solution mainly as syn-conformers. Calculation of the furanose ring pseudorotation parameters in terms of N-S model indicates the predominance of S-population. In contrast to acyclonucleosides, the ribofuranosides obtained are nonactive against entheroviruses and more cytotoxic.  相似文献   

14.
Backbone sugar groups are central components of nucleic acids. The conformations of the ribose/deoxyribose can be elegantly described using the concept of pseudorotation (Altona and Sundaralingam, 1972), and are dominated by the C2′- and C3′-endo conformers. The free energy barrier of the transition between these two major puckering modes can be probed by NMR relaxation experiments (Johnson and Hoogstraten, 2008), but an atomic picture of the transition path per se is only available for several truncated nucleoside analogues (Brameld & Goddard III, 1999). Here, we implemented a new free energy simulation method for Molecular Dynamics simulations using pseudorotation as the reaction coordinate (Cremer and Pople, 1975). This allowed us to compute the free energy landscape of a complete pseudorotation cycle. The free energy landscape revealed not only the relative stability of C2′- and C3′-endo conformers, but also the main transition path and its free energy barrier. As a validation of our new approach, we calculated free energy surface of the pseudorotation of guanosine monophosphate. The free energy surface revealed that the C2′-endo conformation is ?1?kcal/mol that is more stable and the free energy barrier for the transition is 4.5–5?kcal/mol. These are in excellent agreement with previous NMR measurements (Zhang et al., 2012; Röder et al., 1975). We have further applied this method to other systems that are important in pre-biotic chemistry, including an RNA duplex with unique 2′, 5′-phosphodiester linkages.  相似文献   

15.
The synthesis of constrained nucleosides has become an important tool to understand the SAR in the interaction between biological and synthetic nucleotides in the context of antisense oligonucleotide therapy. The incorporation of a cyclopropane into a furanose ring of a nucleoside induces some degree of constrain without affecting significantly the steric environment of a nucleoside. Here, we report a new, short and stereocontrolled synthesis of two constrained nucleosides analogues, 1′,2′- methano-2′,3′-dideoxyuridine 9, and the corresponding cytidine analog 12. X-ray crystallography revealed that the furanose ring in the constrained uridine and cytidine analogues was flattened with virtual loss of pseudorotation. The phosphoramidate esters of the novel constrained uridine and cytidine nucleosides, intended as prodrugs, were tested in cell-based assays for viral replication across the herpes virus family and HIV inhibition courtesy of Merck laboratories, Rahway. They were also tested in antiproliferative assays against colorectal and melanoma cell lines. Unfortunately, none of the compounds showed activity in these assays.  相似文献   

16.
The activation energies for the pseudorotation of the furanose ring in adenosine, guanosine, inosine and xanthosine dissolved in liquid deuteroammonia have been determined by analysis of the longitudinal relaxation rates of the single tertiary carbons between +40 degrees C and minus 60 degrees C. For the purine ribosides the average activation energy was found to be 4.7 plus or minus 0.5 kcal x mol-1 (20 plus or minus 2 kJ x mol-1). For the pyrimidine nucleosides cytidine and uridine the respective activation energy should be higher since it could not be determined by 13-C relaxation measurements. This result can be explained by the formation of a hydrogen bond between the 5'-hydroxymethyl group and the base. In adenosine, guanosine, inosine and xanthosine the relaxation rates of C(5') are smaller than all others thus excluding the formation of a hydrogen bond between the purine base and the 5'-hydroxymethyl group of a strength comparable to the one suggested for cytidine and uridine.  相似文献   

17.
The greatest difficulty in modeling a nucleic acid is generating the coordinates of its furanoses. This difficulty arises from constraints imposed by the closed ring geometries of these sugars. We have developed a new method for modeling these furanose rings. Using this method, the coordinates of a sugar can be obtained quickly and unambiguously for any point on the pseudorotational pathway from one parameter: the phase angle of pseudorotation P. The significant difference between this and previous sugar modeling schemes is that here the endocyclic bond lengths of the five-membered sugar ring are allowed to vary a small amount according to simple, explicit, and experimentally reasonable analytic functions of P. The coefficients of these functions follow from the empirical behavior of the endocyclic bond angles and from geometrical constraints due to ring closure. The ability to model the sugars directly from one parameter greatly facilitates carrying out the global conformational studies on nucleic acid constituents which will be attempted in subsequent papers of this series.  相似文献   

18.
19.
Abstract

The greatest difficulty in modeling a nucleic acid is generating the coordinates of its furanoses. This difficulty arises from constraints imposed by the closed ring geometries of these sugars. We have developed a new method for modeling these furanose rings. Using this method, the coordinates of a sugar can be obtained quickly and unambiguously for any point on the pseudorotational pathway from one parameter: the phase angle of pseudorotation P. The significant difference between this and previous sugar modeling schemes is that here the endocyclic bond lengths of the five-membered sugar ring are allowed to vary a small amount according to simple, explicit, and experimentally reasonable analytic functions of P. The coefficients of these functions follow from the empirical behavior of the endocyclic bond angles and from geometrical constraints due to ring closure. The ability to model the sugars directly from one parameter greatly facilitates carrying out the global conformational studies on nucleic acid constituents which will be attempted in subsequent papers of this series.  相似文献   

20.
Falk M  Sidhu P  Walter JA 《Natural toxins》1998,6(3-4):159-171
Conformational behaviour of kainic acid in aqueous solution was elucidated by molecular mechanics and dynamics. The pucker of the five-membered ring in kainic acid was examined and compared with that of model compounds. In cyclopentane there is no barrier to pseudorotation, so that all puckered states coexist. In pyrrolidinium, the presence of a hetero-atom in the ring introduces a small barrier (about 0.6 kcal mol(-1)) to pseudorotation, separating two stable regions, A and B, which are equivalent by symmetry. In proline, the presence of the carboxylate group on C2 removes the symmetry but two stable conformational minima, A and B, remain. In kainic acid, the presence of side-chains on C3 and C4 introduces complications resulting in additional sub-minima in both regions, A and B. In solution, kainic acid is a complex mixture of conformers with comparable energies, because of the combination of several stable states of the pyrrolidinium ring with the torsional degrees of freedom arising from the two side-chains. The individual geometries, energies, and estimates of relative populations of these conformers were obtained from molecular dynamics simulations. The calculations were validated by a comparison of predicted inter-proton distances and vicinal proton coupling constants with the experimental quantities derived from NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号