首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a rapid and sensitive method for detecting ribonuclease (RNAase). The method makes use of a RNa-Pyronine Y complex which has a different absorption spectrium from that of Pyronine Y alone. When the RNA is hydrolyzed by RNAase, the spectrum of the complex changes to that of unbound Pyronine Y. The resultant decrease in absorbance at 572 nm is linear for final RNAase concentrations ranging from 2 to 45 ng/ml. Optimal assay conditions were 11.5 μg/ml Pyronine Y, 0.56 mg/ml RNA, 80 μmol/ml Tris-HCl buffer, pH 7.8 and 2–45 ng/ml RNAase. The effect of complex concentration, PH, molarity and temperature upon the rate of the reaction were determined.The assay is applicable to crude cell-free extracts.  相似文献   

2.
A possible complex containing RNA processing enzymes   总被引:5,自引:0,他引:5  
The three enzymes, RNAase III, RNAase E and RNAase P participate in the processing of RNA precursors in Escherichia coli. In extracts which contain a mutated RNAase III or RNAase E under certain conditions RNAase P activity is not expressed while in the wild-type extract it is. Upon high-speed centrifugation of a cell extract from a strain of E.,coli, which contains all these three enzymes, the majority of RNAase P, RNAase III and RNAase E activities sediment as particles heavier than their known sizes. In a sucrose density gradient of the cell extract, part of RNAase E and RNAase P activities co-sediment while most of the RNAase III activity is found toward the top of the gradient. This behavior is distinct from other ribonucleases such as RNAase II and RNAase H, which do not sediment as complexes. This complex does not seem to be caused merely by the association of the enzymes with ribosomes.  相似文献   

3.
从血液中提取总RNA的一种快速高效方法   总被引:6,自引:0,他引:6  
血液中含有大量的RNA酶 ,可引起RNA的降解 .防止RNA酶的降解 ,是保证所得RNA片段完整的关键 .目前提取RNA的方法较多 ,但有些方法尚不能完全防止RNA降解 .将TRIZOL方法稍加改进 ,将TRIZOL与异硫氰酸胍联用提取血液淋巴细胞总RNA .琼脂糖凝胶电泳结果表明 ,其 2 8SRNA与 18SRNA的比值为 2∶1,优于单独使用其中任何一种试剂者 .此方法同样适用于从其它细胞中提取RNA .  相似文献   

4.
Pancreatic RNAase (ribonuclease) from the pike whale (lesser rorqual, Balaenoptera acutorostrata) was isolated by affinity chromatography. The protein was digested with different proteolytic enzymes. Peptides were isolated by gel filtration, preparative high-voltage paper electrophoresis and paper chromatography. The amino acid sequence of peptides was determined by the dansyl-Edman method. Although we do not have an amino acid composition for the whole protein, all peptide bonds were overlapped by one or more peptides. Residues 85-96 are bridged by a peptide of unstaisfactory composition and the sequence here depends, at least in part, on homology for its confirmation. Another region in which a similar situation obtains is residues 39-40. This pancreatic RNAase differs at 24-33% of the positions from all other mammalian pancreatic RNAases sequenced to date, except for pig RNAase, from which it differs by 19%. This indicates that whale RNAase has evolved independently during the larger part of the evolution of the mammals. Lesser-rorqual pancreatic RNAase is partially glycosidated (30%) at asparagine-76 in an Asn-Ser-Thr sequence (residues 76-78). Pig RNAase also has carbohydrate attached to asparagine-76 and is identical with lesser-rorqual RNAase in residues 76-98. Detailed evidence for the sequence has been deposited as Supplementary Publication SUP 50066 (11 pages) at the British Library Lending Division, Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms ginen in Biochem. J. (1976) 135, 5.  相似文献   

5.
The purification to homogeneity of a new ribonuclease, named RNAase SPL, from bovine seminal plasma is described. This nuclease, like the bovine pancreatic RNAase A, is pyrimidine specific. Its activity on single-stranded synthetic polyribonucleotides such as poly(rU) is significantly higher than that of RNAase A. However, unlike RNAase A, RNAase SPL is highly active on a double-stranded RNA such as poly[r(A · U)], and shows extremely limited activity on naturally occurring RNAs, such as Escherichia coli RNA, prepared with Mg2+ present throughout the isolation procedure. Under conditions of limiting hydrolysis in which RNAase A degrades 60 to 90% of total E. coli RNA to acid-soluble material and the remaining to material having a molecular weight lower than that of transfer RNA, RNAase SPL does not yield any acid-soluble products: it does not appear to degrade tRNA or 5 S RNA, and causes only a small number of nicks in the remaining RNAs to yield a limiting digest containing products with molecular weights ranging between 10,000 and 150,000. Absence of Mg2+ during the isolation procedure, or heat denaturation of the RNA makes it as susceptible to RNAase SPL as it is to RNAase A.The above and other related observations reported here support the view that there are Mg2+-dependent structural features, besides single and doublestrandedness, in naturally occurring RNAs, that can be distinguished by using the two nucleases RNAase SPL and RNAase A.  相似文献   

6.
Escherichia coli strains BN and CAN are unable to support the growth of bacteriophage T4 psu1+-amber double mutants. For strain BN, this phenotype has been attributed to a defect in 3′ processing of the precursor to psu1+ tRNASer. Since RNAase D and RNAase II are the only well-characterized 3′ exoribonucleases to be implicated in tRNA processing, the status of these activities and their genes in the mutant strains was investigated. Although extracts of strains BN and CAN were defective for hydrolysis of the artificial tRNA precursor, tRNA-C-U, these strains contained normal levels of RNAase D and RNAase II, and purified RNAase D or RNAase II could only partially complement the mutant extracts. Introduction of the wild-type RNAase D gene into strains BN and CAN did not correct the mutant phenotype. Likewise, strains defective in RNAase D and/or RNAase II plated T4psu1+-amber phage normally. These results indicate that the tRNA processing defect in strains BN and CAN is not due to a mutation in either RNAase U or RNAase II. The possibility that the mutation in these strains affects another exoribonuclease or a factor influencing the activity and specificity of RNAase D or RNAase II is discussed.  相似文献   

7.
Abstract— In this report we describe the partial purification and characterization of an acid ribonuclease from beef brain nuclei (RNAase BN2). RNAase BN2 was purified approximately 85-fold. The optimum pH is 6-2 and the optimum temperature 55°C. The effect of ions on the RNAase BN2 and its Km were determined. RNAase BN2 is an endoribonuclease capable of hydrolysing polyA, polyU and polyC. Oligonucleotides produced by the hydrolysis of polyA by the RNAase BN2 have a monophosphate group at the 3' position.  相似文献   

8.
Distribution of ribonuclease (RNAase), acid phosphatase (acid Ph-ase) and beta glucuronidase (BGU) between the granule, cytosol-soluble and post-granule fractions in normal human granulocytes and in granulocytes of chronic granulocytic leukemia (CGL) was studied. CGL granulocytes were found to display relative RNAase activity 1.2 times higher, relative acid Ph-ase activity 2.5 times higher than normal granulocytes. The granule fraction of CGL granulocytes showed 1.4 times higher relative RNAase activity but 0.87 times lower acid Ph-ase activity and the same BGU activity as normal granulocytes. On the other hand, the supernatant soluble fraction of CGL granulocytes showed 4.4 times higher relative RNAase activity, 1.2 times higher relative acid Ph-ase activity and BGU 2.2 times higher than in cytosol soluble fraction of normal granulocytes. Thus, cytosol soluble fraction of CGL granulocytes show a relative activity of the lysosomal enzymes studied which is remarkably higher than in normal granulocytes. The percentage distribution of RNAase, acid Ph-ase and BGU showed that CGL granulocytes contain only 36% of total RNAase activity versus 46% of that in normal ones. On the other hand, CGL granulocytes in cytosol soluble fraction will contain 48% of total RNAase versus 29% of total RNAase in cytosol of normal granulocytes. The isoenzyme profiles of RNAase of granule fractions were similar in normal and CGL granulocytes, while the RNAase isoenzyme profiles of cytosol fractions were different for normal and CGL granulocytes, indicating that some essential part of CGL granulocyte cytosol RNAase differs from RNAase contained in granules and in cytosol of normal granulocytes.  相似文献   

9.
A crude extract of the fat-bodies of third-instar larvae of Sarcophaga peregrina (fleshfly) was found to contain latent RNAase (ribonuclease) consisting of RNAase and inhibitor protein that is sensitive to p-chloromercuribenzoic acid. The RNAase activity in the crude extract of fat-bodies became detectable with time after puparium formation, indicating that the inhibitor is selectively inactivated and RNAase is released from the RNAase-inhibitor complex during metamorphosis.  相似文献   

10.
E. coli RNAase P has a required RNA component   总被引:22,自引:0,他引:22  
R Kole  M F Baer  B C Stark  S Altman 《Cell》1980,19(4):881-887
RNAase P has been partially purified from three thermosensitive strains of E. coli and the thermal inactivation characteristics of each preparation have been determined. The RNAase P preparations from two of these mutant strains, ts241 and ts709, and the wild-type strain have been separated into RNA and protein components. Various mixtures of the reconstituted components have been checked in vitro for complementation of their thermal sensitivity properties. The protein component of RNAase P from ts241 and the RNA component of RNAase P from ts709, respectively, account for the thermal sensitivity of the rnaase P from the two strains. The amount of the RNA component of RNAase P is lower in ts709 than in ts241 or the wild-type parent, 4273. RNAase P partially purified from a revertant of the third mutant strain, A49, which maps at or near the ts241 mutation, has an altered charge when compared to the RNAase P from the parent strain, BF265. We conclude that mutations which affect either the protein or RNA component of RNAase P can confer thermal sensitivity on the enzyme both in vivo and in vitro.  相似文献   

11.
The initial structural alteration of RNAase A due to acid denaturation (0.5 N HCl, 30 degrees C) that accompanies deamidation (without altering enzymic activity) has been dectected by spectrophotometric titration, fluorescence and ORD/CD measurements. It is shown that acid treated RNAase A has an altered conformation at neutral pH, 25 degrees C. This is characterized by the increased accessibility of buried tyrosine residue(s) towards the solvent. The most altered conformation of RNAase A is found in the 10 h acid-treated derivative. This has about 1.5 additional exposed tyrosine residues and a lesser amount of secondary structure than RNAase A. All three methods (titration, fluorescence and CD) established that the structural transition of RNAase A is biphasic. The first phase occurs within 1 h and the resulting subtle conformational change is constant up to 7 h. Following this, after the release of 0.55 mol of ammonia, the major conformational change begins. The altered conformation of the acid-denatured RNAase A could be reversed completely to the native state through a conformational change induced by substrate analogs like 2'- or 3'-CMP. Thus the monodeamidated derivative isolated from the acid-denatured RNAase A by phosphate is very similar to RNAase A in over-all conformation. The results suggest the possibility of flexibility in the RNAase A molecule that does not affect its catalytic activity, as probed through the tyrosine residues.  相似文献   

12.
Pharmacokinetic properties of pancreatic RNAase (RNAase I), RNAase of Bacillus intermedius (RNAase Bi) and RNAase of Streptomyces rimosus (RNAase Sr) were studied on albino rats. RNAase Bi was shown to be characterized by a higher rate and level of absorption into the systemic blood flow, higher retention time, lower elimination from the kidneys and tissues of the peripheral chamber (skeletal muscles) and higher distribution in the other animal organs such as the heart, spleen and brain. It was concluded by the experimental results that the higher antiviral efficacy of RNAase Bi (RNAase Bi greater than RNAase Sr greater than RNAase I), as was known from the literature data, and the ability to stimulate the immunity correlated with higher biological availability of the enzyme in the animals and could be due to its pharmacokinetic properties.  相似文献   

13.
The effectiveness of several commonly used inhibitors of ribonuclease (RNAase) has been studied using the removal of radio-labelled leucine from leucyl-tRNA as a sensitive assay for RNAase activity. The inhibitors were tested under a variety of conditions, varying the temperature, the pH, and the source of RNAase. When each inhibitor is udes separately in the presence of pancreatic RNAase, sodium dodecyl sulfate (SDS) is the most effective; but during long exposures to temperatures above 0 degrees C considerable amounts of RNA are still degraded. Combination of inhibitors are more effective in preserving RNA; with this assay, a combination of SDS with diethyl pyrocarbonate is the most effective. Proteinase K acts as an inhibitor when used in combination with SDS; however, it has RNAase activity when used by itself. Diethyl pyrocarbonate, when used at the high range of concentrations employed by others for RNAase inhibition, reacts with RNA changing its charge. However, when diethyl pyrocarbonate is used in smaller amounts the effects on RNA are minimal, and when used in combination with SDS it effectively inhibits RNAase.  相似文献   

14.
C L Lee  S S Li  C Y Li    T M Chu 《The Biochemical journal》1983,215(3):605-612
Four ribonucleases (RNAases I-IV) have been purified to homogeneity from human seminal plasma by precipitation with 40-75%-satd. (NH4)2SO4, followed by chromatographies on concanavalin A-Sepharose 4B, DEAE-cellulose phosphocellulose, agarose-5'-(4-aminophenylphospho)uridine 2'(3')-phosphate (RNAase affinity column) and Sephadex G-75 or G-100. The homogeneity of these RNAases was confirmed by polyacrylamide-gel electrophoresis. Mr values for these purified RNAases were 78 000, 16 000, 13 300 and 5000 as estimated by gel filtration. Enzyme activities of RNAases I, III and IV were inhibited by Mn2+, Zn2+ and Cu2+ and activated by Na+, K+, Ba2+, Mg2+, Fe2+ and EDTA, whereas that of RNAase II was inhibited by Ba2+, Mg2+, Fe2+, Mn2+, Zn2+ and Cu2+ and activated by Na+, K+ and EDTA. RNAases I, II and IV demonstrated a higher affinity for poly(C) and poly(U) or yeast RNA, whereas RNAase III preferentially hydrolysed poly(U) over poly(C) and yeast RNA. In the presence of 5 mM-spermine, RNAase I was dissociated to a low-Mr (5000) enzyme with an increase in total RNAase enzymic activity. Xenoantiserum to each RNAase was raised and evaluated by immunoprecipitation and immunohistochemical methods. Anti-(seminal RNAase III) antiserum showed no immunological cross-reaction with RNAases of other human origin, whereas anti-(seminal RNAase I), -(RNAase II) and -(RNAase IV) antisera exhibited indistinguishable immunological reactions with serum RNAase and other human RNAases, except that anti-(seminal RNAase I) and -(RNAase antisera IV) did not react with pancreatic RNAases. Seminal RNAases I and IV were identical immunologically as shown by anti-(RNAase I) and anti-(RNAase IV) in immunodiffusion. Immunohistochemical study revealed that, among human tissues examined, only prostate expressed seminal RNAase III. These results suggested that human seminal RNAase I may be an aggregated molecule of RNAase IV and that seminal RNAases II and IV are similar to serum RNAases, whereas seminal RNAase III is a prostate-specific enzyme.  相似文献   

15.
Processing of bacteriophage T4 tRNAs. The role of RNAase III   总被引:2,自引:0,他引:2  
In order to assess the contribution of the processing enzyme RNAase III to the maturation of bacteriophage T4 transfer RNA, RNAase III+ and RNAase III? strains were infected with T4 and the tRNAs produced were analyzed. Infection of the RNAase III+ strains of Escherichia coli with T4Δ27, a deletion strain missing seven of the ten genes in the T4 tRNA cluster, results in the appearance of a transient 10.1 S RNA molecule as well as the three stable RNAs encoded by T4Δ27, species 1, rRNALeu and tRNAGln. Infection of an RNAase III? strain results in the appearance of a larger, transient RNA molecule, 10.5 S, and a severe reduction in the accumulation of tRNAGln. The 10.5 S RNA is similar to 10.1 S RNA but contains extra nucleotides (about 50) at the 5′ end. (10.1 S contains all the three final molecules plus about 70 extra nucleotides at the 3′ end.) Both 10.5 S and 10.1 S RNAs can be processed in vitro into the three final molecules. When 10.1 S is the substrate, the three final molecules are obtained whether extracts of RNAase III+ or RNAase III? cells are used. However, when 10.5 S is the substrate RNAase III+ extracts bring out normal maturation, while using RNAase III? extracts the level of tRNAGln is severely reduced. When 10.5 S is used with RNAase III+ extracts maturation proceeds via 10.1 S RNA, while when RNAase III? extracts were used 10.1 S is not detected. The 10.5 S RNA can be converted to 10.1 S RNA by RNAase III in a reaction which produces only two fragments. The sequence at the 5′ end of the 10.5 S suggests a secondary structure in which the RNAase III cleavage site is in a stem. These experiments show that the endonucleolytic RNA processing enzyme RNAase III is required for processing at the 5′ end of the T4 tRNA cluster where it introduces a cleavage six nucleotides proximal to the first tRNA, tRNAGln, in the cluster.  相似文献   

16.
Alkaline RNAase (ribonuclease) and RNAase inhibitor were assayed to determine the potential role of the degradative process in regulating the amount of RNA in the mammary gland and mammary tumour. Very little free alkaline RNAase activity was found in the cytosol fraction of the mammary gland of virgin, pregnant, lactating or involuting Fischer rats. However, addition of p-chloromercuribenzoate to the assay medium revealed latent RNAase which, when expressed on a DNA basis, decreased during pregnancy and lactation. The cytosol latent RNAase is stable in 0.125 M-H2SO4. The non-cytosol RNAase activity also decreased during pregnancy and lactation. Addition of Triton X-100 produced slightly higher activity at all stages tested. The inhibitor activity in rat mammary gland was very low before pregnancy, increased gradually during pregnancy and more dramatically at parturition, continued to increase throughout lactation and returned to resting-gland values by the sixth day of involution. The increase during pregnancy may be due to the increased cellularity of the gland, whereas the gain during lactation was more than could be accounted for by increases in cell number. The R3230AC transplantable mammary tumour resembles the normal gland in early lactation with respect to both its cytosol and non-cytosol alkaline RNAase activities and its moderately high content of RNAase inhibitor. The relatively high inhibitor and low RNAase activities in both the gland of the lactating rat and in the tumour are of potential significance in maintaining high amounts of RNA and increased rates of protein synthesis in these tissues.  相似文献   

17.
An allosteric model for ribonuclease.   总被引:1,自引:0,他引:1       下载免费PDF全文
Data from two assay systems show that the kinetics of the hydrolysis of cytidine 2':3'-cyclic monophosphate by bovine pancreatic RNAase (ribonuclease) is not consistent with conventional models. An allosteric model involving a substrate-dependent change in the equilibrium between two enzyme conformations is proposed. Such a model gives rise to a calculated curve of velocity versus substrate concentration which fits the experimental data. The model is also consistent with the results of an examination of the tryptic digestion of RNAase. Substrate analogues are able to protect RNAase against hydrolysis by trypsin and the percentage of RNAase activity which remains after digestion increases sigmoidally as the analogue concentration is increased. The model also explains the pattern seen in the Km values quoted in the literature and is consistent with strong physical evidence for a ligand-induced conformational change for RNAase reported in the literature.  相似文献   

18.
Identification of ribonuclease P activity from chick embryos   总被引:2,自引:0,他引:2  
RNAase P (EC 3.1.26.5) activity has been identified in chick embryo thigh tissue on the basis of specific cleavage of Escherichia coli 129 nucleotide tRNATyr precursor and has been partially purified by the procedure used for human tissue culture KB cell RNAase P. RNAase P from chick resembles the KB cell RNAase P in substrate specificity, requirement for a divalent cation (Mg2+) and a monovalent cation (K+, Na+ or NH4+) for activity, inhibition by bulk tRNA, ready inactivation by proteases, and increasing instability; with purification. RNAase P activity is also present in whole chick embryos, as well as in liver and heart tissues. Furthermore, crude preparations of RNAase P from chick embryo heart tissue are relatively free of contaminating nucleases.  相似文献   

19.
A ribonuclease (RNAase) was isolated and purified from the urine of a 45-year-old man by column chromatographies on DEAE-Sepharose CL-6B, cellulose phosphate and CM-cellulose followed by gel filtrations on Bio-Gel P-100 and Sephadex G-75, and finally to a homogeneous state by SDS-polyacrylamide gel electrophoresis. The enzyme was designated RNAase 1. It was possible to detect RNAase 1 isozymes in urine and serum without difficulty using isoelectric focusing electrophoresis followed by immunoblotting with a rabbit antibody specific to RNAase 1. The existence of genetic polymorphism of RNAase 1 was detected in human serum utilizing this technique (Yasuda, T. et al. (1988) Am. J. Hum. Genet., in press). RNAase 1 in serum and urine seemed to exist in multiple forms with regard to molecular weight and pI value. Genetically polymorphic RNAase 1 was a glycoprotein, containing three mannose, one fucose, four glucosamine and no sialic acid residues per molecule, with a molecular weight of 16,000 and 17,500 determined by gel filtration and SDS-polyacrylamide gel electrophoresis, respectively. The enzyme was most active at pH 7.0 on yeast RNA substrate and inhibited remarkably by Cu2+, Hg2+ and Zn2+. It also showed definite substrate preference for poly(C) and poly(U), but much less activity against poly(A) and poly(G). Thus, the enzyme is a pyrimidine-specific RNAase.  相似文献   

20.
Kidney cortex, red medulla and white medulla were separated into nuclei, mitochondria, microsomal and 105000g supernatant fractions. Assay of RNAase (ribonuclease) activity at pH7.8 revealed that, for each subcellular fraction, activity was much greater in cortex than in red or white medulla; this was true for both free RNAase and total (free plus latent) RNAase. For example, the free RNAase activity in the 105000g supernatant of cortex was 5 and 8 times higher than in red and white medulla respectively. No latent RNAase activity was found in any particulate fraction. Latent supernatant RNAase activities (suggesting presence of bound RNAase inhibitor) were similar in cortex and medulla. The cortex supernatant contained minimal free RNAase inhibitor, whereas that of the red and white medulla showed about one-third and one-tenth respectively of the inhibitor activity measured in liver. Adrenalectomy did not change RNAase activity in any fraction nor the content of free RNAase inhibitor in the kidney supernatant, but did decrease the liver RNAase inhibitor content by 40%. In supernatants from mouse kidney, both free and total RNAase activities of both cortex and red medulla were similar to those of rat red medulla. Mouse cortex contained appreciably higher amounts of free RNAase inhibitor than rat cortex. The difference between the rat and mouse cortical RNAase activity and inhibitor content may help explain the relative ease with which satisfactory renal polyribosome profiles were obtained from mouse kidneys. Our results, as well as those of Kline & Liberti [(1973) Biochem. Biophys. Res. Commun. 52, 1271–1277], showing that renal red and white medulla are more active than cortex in protein synthesis, are consistent with the hypothesis that the RNAase–RNAase-inhibitor system may participate in the regulation of protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号