首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
It is well-established that CYP24, an immediate target gene of VDR is upregulated by VDR ligands. This study is focused on the functional role of unliganded VDR by investigating the correlation between the expression of VDR protein and basal mRNA levels of CYP24 in breast cancer cell lines. Analyses of multiple breast cancer cell lines demonstrated an inverse correlation between VDR protein expression and CYP24 mRNA expression levels; while in the presence of ligand, VDR protein level was positively correlated with CYP24 expression. In MCF-7 cells, VDR was mainly distributed in the nuclei in the absence of ligand. VDR overexpression in MCF-7 cells and MDA-MB231 cells decreased CYP24 mRNA expression levels and CYP24 promoter activity. Conversely, knock-down of VDR using siRNA techniques in MCF-7 and T47D cells significantly increased CYP24 mRNA expression. We also found that overexpression of VDR with a polymorphic site (FokI-FF) at its AF-1 domain, which makes VDR shorter by three amino acids, failed to repress CYP24 promoter activity. This report provides conclusive evidence for the repressive action of unliganded VDR on the expression of its target gene CYP24 and the importance of an intact VDR AF-1 domain for its repressive action.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Vitamin D3, an important seco-steroid hormone for the regulation of body calcium homeostasis, promotes immature myeloid precursor cells to differentiate into monocytes/macrophages. Vitamin D receptor (VDR) belongs to a nuclear receptor super-family that mediates the genomic actions of vitamin D3 and regulates gene expression by binding with vitamin D response elements in the promoter region of the cognate gene. Thus by regulating gene expression, VDR plays an important role in modulating cellular events such as differentiation, apoptosis, and growth. Here we report lipopolysaccharide (LPS), a bacterial toxin; decreases VDR protein levels and thus inhibits VDR functions in the human blood monocytic cell line, THP-1. The biologically active form of vitamin D3, 1alpha,25-dihydroxy vitamin D3 [1,25(OH)2D3], induced VDR in THP-1 cells after 24 h treatment, and LPS inhibited 1,25(OH)2D3-mediated VDR induction. However, LPS and 1,25(OH)2D3 both increased VDR mRNA levels in THP-1 cells 20 h after treatment, as observed by real time RT-PCR. Moreover, LPS plus 1,25(OH)2D3 action on VDR mRNA level was additive and synergistic. A time course experiment up to 60 h showed an increase in VDR mRNA that was not preceded with an increase in VDR protein levels. Although the proteasome pathway plays an important role in VDR degradation, the proteasome inhibitor lactacystin had no effect on the LPS-mediated down-regulation of 1,25(OH)2D3 induced VDR levels. Reduced VDR levels by LPS were accompanied by decreased 1,25(OH)2D3/VDR function determined by VDR responsive 24-hydroxylase (CYP24) gene expression. The above results suggest that LPS impairs 1,25(OH)2D3/VDR functions, which may negatively affect the ability of 1,25(OH)2D3 to induce myeloid differentiation into monocytes/macrophages.  相似文献   

14.
Vitamin D receptor (VDR) is a nuclear protein which mediates the physiological actions of its hormone ligand, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). While it appears that the receptor-hormone complex regulates the expression of hormone-dependent genes involved in mineral homeostasis, its role in induction of differentiation of leukaemic cells is less clear. We have studied the expression of the VDR gene in several sublines of HL-60 leukaemic cells with varying responsiveness to 1,25(OH)2D3. Sublines which rapidly differentiated to monocytic forms were shown to contain elevated steady-state levels of VDR mRNA within 1 h of exposure to high concentration of 1,25(OH)2D3. This up-regulation of the expression of VDR was not apparent in sublines in which monocytic differentiation occurred after a delay of several days. Beginning at approximately 3 h after exposure to 1,25(OH)2D3 in most cases, there was a gradual decline in VDR mRNA levels. Measurement of steady-state levels of mRNA for c-myc and c-fos showed that in sublines of HL-60 cells which respond rapidly to 1,25(OH)2D3, elevation of VDR mRNA is evident prior to the changes in proto-oncogene expression. These data are consistent with the hypothesis that a change in VDR gene expression is one of the steps that promote monocytic differentiation.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号