首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homer proteins form an adapter system that regulates coupling of group 1 metabotropic glutamate receptors with intracellular inositol trisphosphate receptors and is modified by neuronal activity. Here, we demonstrate that Homer proteins also physically associate with ryanodine receptors type 1 (RyR1) and regulate gating responses to Ca(2+), depolarization, and caffeine. In contrast to the prevailing notion of Homer function, Homer1c (long form) and Homer1-EVH1 (short form) evoke similar changes in RyR activity. The EVH1 domain mediates these actions of Homer and is selectively blocked by a peptide that mimics the Homer ligand. 1B5 dyspedic myotubes expressing RyR1 with a point mutation of a putative Homer-binding domain exhibit significantly reduced (approximately 33%) amplitude in their responses to K(+) depolarization compared with cells expressing wild type protein. These results reveal that in addition to its known role as an adapter protein, Homer is a direct modulator of Ca(2+) release gain. Homer is the first example of an "adapter" that also modifies signaling properties of its target protein. The present work reveals a novel mechanism by which Homer directly modulates the function of its target protein RyR1 and excitation-contraction coupling in skeletal myotubes. This form of regulation may be important in other cell types that express Homer and RyR1.  相似文献   

2.
Junctophilin 1 (JP1), a 72-kDa protein localized at the skeletal muscle triad, is essential for stabilizing the close apposition of T-tubule and sarcoplasmic reticulum membranes to form junctions. In this study we report that rapid and selective labeling of hyper-reactive thiols found in both JP1 and ryanodine receptor type 1 (RyR1) with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin, a fluorescent thiol-reactive probe, proceeded 12-fold faster under conditions that minimize RyR1 gating (e.g. 10 mM Mg2+) compared with conditions that promote high channel activity (e.g. 100 microM Ca2+, 10 mM caffeine, 5 mM ATP). The reactivity of these thiol groups was very sensitive to oxidation by naphthoquinone, H2O2, NO, or O2, all known modulators of the RyR1 channel complex. Using preparative SDS-PAGE, in-gel tryptic digestion, high pressure liquid chromatography, and mass spectrometry-based peptide sequencing, we identified 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin-thioether adducts on three cysteine residues of JP1 (101, 402, and 627); the remaining five cysteines of JP1 were unlabeled. Co-immunoprecipitation experiments demonstrated a physical interaction between JP1 and RyR1 that, like thiol reactivity, was sensitive to RyR1 conformation and chemical status of the hyper-reactive cysteines of JP1 and RyR1. These findings support a model in which JP1 interacts with the RyR1 channel complex in a conformationally sensitive manner and may contribute integral redox-sensing properties through reactive sulfhydryl chemistry.  相似文献   

3.
The type 1 ryanodine receptor (RyR1) is a Ca(2+) release channel found in the sarcoplasmic reticulum of skeletal muscle and plays a pivotal role in excitation-contraction coupling. The RyR1 channel is activated by a conformational change of the dihydropyridine receptor upon depolarization of the transverse tubule, or by Ca(2+) itself, i.e. Ca(2+)-induced Ca(2+) release (CICR). The molecular events transmitting such signals to the ion gate of the channel are unknown. The S4-S5 linker, a cytosolic loop connecting the S4 and S5 transmembrane segments in six-transmembrane type channels, forms an α-helical structure and mediates signal transmission in a wide variety of channels. To address the role of the S4-S5 linker in RyR1 channel gating, we performed alanine substitution scan of N-terminal half of the putative S4-S5 linker (Thr(4825)-Ser(4829)) that exhibits high helix probability. The mutant RyR1 was expressed in HEK cells, and CICR activity was investigated by caffeine-induced Ca(2+) release, single-channel current recordings, and [(3)H]ryanodine binding. Four mutants (T4825A, I4826A, S4828A, and S4829A) had reduced CICR activity without changing Ca(2+) sensitivity, whereas the L4827A mutant formed a constitutive active channel. T4825I, a disease-associated mutation for malignant hyperthermia, exhibited enhanced CICR activity. An α-helical wheel representation of the N-terminal S4-S5 linker provides a rational explanation to the observed activities of the mutants. These results suggest that N-terminal half of the S4-S5 linker may form an α-helical structure and play an important role in RyR1 channel gating.  相似文献   

4.
Single-channel analysis of sarcoplasmic reticulum vesicles prepared from diaphragm muscle, which contains both RyR1 and RyR3 isoforms, revealed the presence of two functionally distinct ryanodine receptor calcium release channels. In addition to channels with properties typical of RyR1 channels, a second population of ryanodine-sensitive channels with properties distinct from those of RyR1 channels was observed. The novel channels displayed close-to-zero open-probability at nanomolar Ca2+ concentrations in the presence of 1 mM ATP, but were shifted to the open conformation by increasing Ca2+ to micromolar levels and were not inhibited at higher Ca2+ concentrations. These novel channels were sensitive to the stimulatory effects of cyclic adenosine 5'-diphosphoribose (cADPR). Detection of this second population of RyR channels in lipid bilayers was always associated with the presence of the RyR3 isoform in muscle preparations used for single-channel measurements and was abrogated by the knockout of the RyR3 gene in mice. Based on the above, we associated the novel population of channels with the RyR3 isoform of Ca2+ release channels. The functional properties of the RyR3 channels are in agreement with a potential qualitative contribution of this channel to Ca2+ release in skeletal muscle and in other tissues.  相似文献   

5.
Calmodulin activates the skeletal muscle Ca(2+) release channel RYR1 at nm Ca(2+) concentrations and inhibits the channel at microm Ca(2+) concentrations. Using a deletion mutant of calmodulin, we demonstrate that amino acids 2-8 are required for high affinity binding of calmodulin to RYR1 at both nm and microm Ca(2+) concentrations and are required for maximum inhibition of the channel at microm Ca(2+) concentrations. In contrast, the addition of three amino acids to the N terminus of calmodulin increased the affinity for RYR1 at both nm and microm Ca(2+) concentrations, but destroyed its functional effects on RYR1 at nm Ca(2+). Using both full-length RYR1 and synthetic peptides, we demonstrate that the calmodulin-binding site on RYR1 is likely to be noncontiguous, with the C-terminal lobe of both apocalmodulin and Ca(2+)-calmodulin binding to amino acids between positions 3614 and 3643 and the N-terminal lobe binding at sites that are not proximal in the primary sequence. Ca(2+) binding to the C-terminal lobe of calmodulin converted it from an activator to an inhibitor, but an interaction with the N-terminal lobe was required for a maximum effect on RYR1. This interaction apparently depends on the native sequence or structure of the first few amino acids at the N terminus of calmodulin.  相似文献   

6.
Neomycin is a large, positively charged, aminoglycoside antibiotic that has previously been shown to induce a voltage-dependent substate block in the cardiac isoform of the ryanodine receptor (RyR2). It was proposed that block involved an electrostatic interaction between neomycin and putative regions of negative charge in both the cytosolic and luminal mouths of the pore. In this study, we have attempted to screen charge by increasing potassium concentration in single-channel experiments. Neomycin block is apparent at both cytosolic and luminal faces of the channel in all K+ concentrations tested and alterations in K+ concentration have no effect on the amplitudes of the neomycin-induced substates. However, the kinetics of both cytosolic and luminal block are sensitive to changes in K+ concentration. In both cases increasing the K+ concentration leads to an increase in dissociation constant (KD). Underlying these changes are marked increases in rates of dissociation (k(off)), with little change in rates of association (k(on)). The increase in k(off) is more marked at the luminal face of the channel. Changes in K+ concentration also result in alterations in the voltage dependence of block. We have interpreted these data as supporting the proposal that neomycin block of RyR2 involves electrostatic interactions with the polycation forming a poorly fitting "plug" in the mouths of the conduction pathway. These observations emphasize the usefulness of neomycin as a probe for regions of charge in both the cytosolic and luminal mouths of the RyR2 pore.  相似文献   

7.
  1. Download : Download high-res image (384KB)
  2. Download : Download full-size image
  相似文献   

8.
We have determined the structure of a domain peptide corresponding to the extreme 19 C-terminal residues of the ryanodine receptor Ca2+ release channel. We examined functional interactions between the peptide and the channel, in the absence and in the presence of the regulatory protein Homer. The peptide was partly alpha-helical and structurally homologous to the C-terminal end of the T1 domain of voltage-gated K+ channels. The peptide (0.1-10 microM) inhibited skeletal ryanodine receptor channels when the cytoplasmic Ca2+ concentration was 1 microM; but with 10 microM cytoplasmic Ca2+, skeletal ryanodine receptors were activated by < or = 1.0 microM peptide and inhibited by 10 microM peptide. Cardiac ryanodine receptors on the other hand were inhibited by all peptide concentrations, at both Ca2+ concentrations. When channels did open in the presence of the peptide, they were more likely to open to substate levels. The inhibition and increased fraction of openings to subconductance levels suggested that the domain peptide might destabilise inter-domain interactions that involve the C-terminal tail. We found that Homer 1b not only interacts with the channels, but reduces the inhibitory action of the C-terminal tail peptide, perhaps by stabilizing inter-domain interactions and preventing their disruption.  相似文献   

9.
We characterized type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm by immunoaffinity chromatography using a specific antibody. The purified receptor was free from 12-kDa FK506-binding protein, although it retained the ability to bind 12-kDa FK506-binding protein. Negatively stained images of RyR3 show a characteristic rectangular structure that was indistinguishable from RyR1. The location of the D2 segment, which exists uniquely in the RyR1 isoform, was determined as the region around domain 9 close to the corner of the square-shaped assembly, with use of D2-directed antibody as a probe. The RyR3 homotetramer had a single class of high affinity [3H]ryanodine-binding sites with a stoichiometry of 1 mol/mol. In planar lipid bilayers, RyR3 displayed cation channel activity that was modulated by several ligands including Ca2+, Mg2+, caffeine, and ATP, which is consistent with [3H]ryanodine binding activity. RyR3 showed a slightly larger unit conductance and a longer mean open time than RyR1. Whereas RyR1 showed two classes of channel activity with distinct open probabilities (Po), RyR3 displayed a homogeneous and steeply Ca2+-dependent activity with Po approximately 1. RyR3 was more steeply affected in the channel activity by sulfhydryl-oxidizing and -reducing reagents than RyR1, suggesting that the channel activity of RyR3 may be transformed more precipitously by the redox state. This is also a likely explanation for the difference in the Ca2+ dependence of RyR3 between [3H]ryanodine binding and channel activity.  相似文献   

10.
11.
Meissner G 《Cell calcium》2004,35(6):621-628
The release of Ca(2+) ions from intracellular stores is a key step in a wide variety of cellular functions. In striated muscle, the release of Ca(2+) from the sarcoplasmic reticulum (SR) leads to muscle contraction. Ca(2+) release occurs through large, high-conductance Ca(2+) release channels, also known as ryanodine receptors (RyRs) because they bind the plant alkaloid ryanodine with high affinity and specificity. The RyRs are isolated as 30S protein complexes comprised of four 560 kDa RyR2 subunits and four 12 kDa FK506 binding protein (FKBP12) subunits. Multiple endogenous effector molecules and posttranslational modifications regulate the RyRs. This review focuses on current research toward understanding the control of the isolated cardiac Ca(2+) release channel/ryanodine receptor (RyR2) by Ca(2+), calmodulin, thiol oxidation/reduction and nitrosylation, and protein phosphorylation.  相似文献   

12.
The ryanodine receptor type 1 (RyR1) is a homotetrameric Ca(2+) release channel located in the sarcoplasmic reticulum of skeletal muscle where it plays a role in the initiation of skeletal muscle contraction. A soluble, 6×-histidine affinity-tagged cytosolic fragment of RyR1 (amino acids 1-4243) was expressed in HEK-293 cells, and metal affinity chromatography under native conditions was used to purify the peptide together with interacting proteins. When analyzed by gel-free liquid chromatography mass spectrometry (LC-MS), 703 proteins were identified under all conditions. This group of proteins was filtered to identify putative RyR interacting proteins by removing those proteins found in only 1 RyR purification and proteins for which average spectral counts were enriched by less than 4-fold over control values. This resulted in 49 potential RyR1 interacting proteins, and 4 were selected for additional interaction studies: calcium homeostasis endoplasmic reticulum protein (CHERP), endoplasmic reticulum-Golgi intermediate compartment 53-kDa protein (LMAN1), T-complex protein, and phosphorylase kinase. Western blotting showed that only CHERP co-purified with affinity-tagged RyR1 and was eluted with imidazole. Immunofluorescence showed that endogenous CHERP co-localizes with endogenous RyR1 in the sarcoplasmic reticulum of rat soleus muscle. A combination of overexpression of RyR1 in HEK-293 cells with siRNA-mediated suppression of CHERP showed that CHERP affects Ca(2+) release from the ER via RyR1. Thus, we propose that CHERP is an RyR1 interacting protein that may be involved in the regulation of excitation-contraction coupling.  相似文献   

13.
14.
To clarify whether activity of the ryanodine receptor type 2 (RyR2) is reduced in the sarcoplasmic reticulum (SR) of cardiac muscle, as is the case with the ryanodine receptor type 1 (RyR1), Ca2+-dependent [3H]ryanodine binding, a biochemical measure of Ca2+-induced Ca2+ release (CICR), was determined using SR vesicle fractions isolated from rabbit and rat cardiac muscles. In the absence of an adenine nucleotide or caffeine, the rat SR showed a complicated Ca2+ dependence, instead of the well-documented biphasic dependence of the rabbit SR. In the rat SR, [3H]ryanodine binding initially increased as [Ca2+] increased, with a plateau in the range of 10–100 µM Ca2+, and thereafter further increased to an apparent peak around 1 mM Ca2+, followed by a decrease. In the presence of these modulators, this complicated dependence prevailed, irrespective of the source. Addition of 0.3–1 mM Mg2+ unexpectedly increased the binding two- to threefold and enhanced the affinity for [3H]ryanodine at 10–100 µM Ca2+, resulting in the well-known biphasic dependence. In other words, the partial suppression of RyR2 is relieved by Mg2+. Ca2+ could be a substitute for Mg2+. Mg2+ also amplifies the responses of RyR2 to inhibitory and stimulatory modulators. This stimulating effect of Mg2+ on RyR2 is entirely new, and is referred to as the third effect, in addition to the well-known dual inhibitory effects. This effect is critical to describe the role of RyR2 in excitation-contraction coupling of cardiac muscle, in view of the intracellular Mg2+ concentration. [3H]ryanodine binding; CICR; stimulation by physiological Mg2+, excitation-contraction coupling in the heart  相似文献   

15.
Deletion of the ryanodine receptor type 3 (RyR3) results in specific changes in hippocampal synaptic plasticity, without affecting hippocampal morphology, basal synaptic transmission or presynaptic function. Robust long-term potentiation (LTP) induced by repeated, strong tetanization in the CA1 region and in the dentate gyrus was unaltered in hippocampal slices in vitro, whereas weak forms of plasticity generated by either a single weak tetanization or depotentiation of a robust LTP were impaired. These distinct physiological deficits were paralleled by a reduced flexibility in re-learning a new target in the water-maze. In contrast, learning performance in the acquisition phase and during probe trial did not differ between the mutants and their wild-type littermates. In the open-field, RyR3(-/-) mice displayed a normal exploration and habituation, but had an increased speed of locomotion and a mild tendency to circular running. The observed physiological and behavioral effects implicate RyR3-mediated Ca(2+) release in the intracellular processes underlying spatial learning and hippocampal synaptic plasticity.  相似文献   

16.
Transient receptor potential (TRP) channels are nonselective cation channels, several of which are expressed in striated muscle. Because the scaffolding protein Homer 1 has been implicated in TRP channel regulation, we hypothesized that Homer proteins play a significant role in skeletal muscle function. Mice lacking Homer 1 exhibited a myopathy characterized by decreased muscle fiber cross-sectional area and decreased skeletal muscle force generation. Homer 1 knockout myotubes displayed increased basal current density and spontaneous cation influx. This spontaneous cation influx in Homer 1 knockout myotubes was blocked by reexpression of Homer 1b, but not Homer 1a, and by gene silencing of TRPC1. Moreover, diminished Homer 1 expression in mouse models of Duchenne's muscular dystrophy suggests that loss of Homer 1 scaffolding of TRP channels may contribute to the increased stretch-activated channel activity observed in mdx myofibers. These findings provide direct evidence that Homer 1 functions as an important scaffold for TRP channels and regulates mechanotransduction in skeletal muscle.  相似文献   

17.
Cellular signaling proteins such as metabotropic glutamate receptors, Shank, and different types of ion channels are physically linked by Vesl (VASP/Ena-related gene up-regulated during seizure and LTP)/Homer proteins [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23 (2000) 80; J. Cell Sci. 113 (2000) 1851]. Vesl/Homer proteins have also been implicated in differentiation and physiological adaptation processes [Nat. Neurosci. 4 (2001) 499; Nature 411 (2001) 962; Biochem. Biophys. Res. Commun. 279 (2000) 348]. Here we provide evidence that a Vesl/Homer subtype, Vesl-1L/Homer-1c (V-1L), reduces the function of the intracellular calcium channel ryanodine receptor type 2 (RyR2). In contrast, Vesl-1S/Homer-1a (V-1S) had no effect on RyR2 function but reversed the effects of V-1L. In live cells, in calcium release studies and in single-channel electrophysiological recordings of RyR2, V-1L reduced RyR2 activity. Important physiological functions and pharmacological properties of RyR2 are preserved in the presence of V-1L. Our findings demonstrate that a protein-protein interaction between V-1L and RyR2 is not only necessary for organizing the structure of intracellular calcium signaling proteins [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23(2000)80; J. Cell Sci. 113 (2000) 1851; Nat Neurosci. 4 (2001) 499; Nature 411 (2001) 962; Biochem. Biophys. Res. Commun. 279 (2000) 348; Nature 386 (1997) 284], but that V-1L also directly regulates RyR2 channel activity by changing its biophysical properties. Thereby it may control cellular calcium homeostasis. These observations suggest a novel mechanism for the regulation of RyR2 and calcium-dependent cellular functions.  相似文献   

18.
Ryanodine receptors (RyRs) amplify intracellular Ca(2+) signals by massively releasing Ca(2+) from intracellular stores. Exaggerated chronic Ca(2+) release can trigger cellular apoptosis underlying a variety of neurodegenerative diseases. Aberrant functioning of presenilin-1 (PS1) protein instigates Ca(2+)-dependent apoptosis, providing a basis for the "calcium hypothesis" of Alzheimer's disease (AD). To get insight into this problem, we hypothesized that the previously reported physical interaction between RyR and PS1 modulates functional properties of the RyR. We generated a soluble cytoplasmic N-terminal fragment of PS1 comprising the first 82 amino acid (PS1 NTF(1-82)), the candidate for interaction with putative cytoplasmic modulatory sites of the RyR, and studied its effect on single channel currents of mouse brain RyRs incorporated in lipid bilayers. PS1 NTF(1-82) strongly increased both mean currents (EC(50)=12nM, Hill coefficient (n(H)) approximately 1) and open probability for higher sublevels for single RyR channels (EC(50)=7nM, n(H) approximately 2). Bell-shaped Ca(2+)-activation curve remained unchanged, suggesting that PS1 NTF(1-82) allosterically potentiates RyRs, but that the channel still requires Ca(2+) for activation. Corroborating such an independent mechanism, the RyR potentiation by PS1 NTF(1-82) was overridden by receptor desensitization at high [Ca(2+)] (pCa>5). This potentiation of RyR by PS1 NTF(1-82) reveals a new mechanism of physiologically relevant PS1-regulated Ca(2+) release from intracellular stores, which could be alternative or additional to recently reported intracellular Ca(2+) leak channels formed by PS1 holoproteins.  相似文献   

19.
Ryanodine receptors plays a crucial role in skeletal muscle excitation–contraction coupling by releasing calcium ions required for muscle contraction from the sarcoplasmic reticulum. At least three phenotypes associated with more than 100 RYR1 mutations have been identified; in order to elucidate possible pathophysiological mechanisms of RYR1 mutations linked to neuromuscular disorders, it is essential to define the mutation class by studying the functional properties of channels harbouring clinically relevant amino acid substitutions. In the present report we investigated the functional effects of the c.7304G > T RYR1 substitution (p.Arg2435Leu) found in a patient affected by central core disease. Both parents were heterozygous for the substitution while the proband was homozygous. We characterized Ca2+ homeostasis in myoD transduced myotubes from controls, the heterozygous parents and the homozygous proband expressing the endogenous mutation. We also expressed the recombinant mutant channels in heterologous cells and characterized their [3H]ryanodine binding and single channel properties. Our results show that the p.Arg2435Leu substitution affects neither the resting [Ca2+], nor the sensitivity of the ryanodine receptor to pharmacological activators, but rather reduces the release of Ca2+ from intracellular stores induced by pharmacological activators as well as by KCl via the voltage sensing dihydropyridine receptor.  相似文献   

20.
Sphingosine inhibits the activity of the skeletal muscle Ca2+ release channel (ryanodine receptor) and is a noncompetitive inhibitor of [3H]ryanodine binding (Needleman et al., Am. J. Physiol. 272, C1465-1474, 1997). To determine the contribution of other sphingolipids to the regulation of ryanodine receptor activity, several sphingolipid bases were assessed for their ability to alter [3H]ryanodine binding to sarcoplasmic reticulum (SR) membranes and to modulate the activity of the Ca2+ release channel. Three lipids, N,N-dimethylsphingosine, dihydrosphingosine, and phytosphingosine, inhibited [3H]ryanodine binding to both skeletal and cardiac SR membranes. However, the potency of these three lipids and sphingosine was lower in rabbit cardiac membranes when compared to rabbit skeletal muscle membranes and when compared to sphingosine. Like sphingosine, the lipids inhibited [3H]ryanodine binding by greatly increasing the rate of dissociation of bound [3H]ryanodine from SR membranes, indicating that these three sphingolipid bases were noncompetitive inhibitors of [3H]ryanodine binding. These bases also decreased the activity of the Ca2+ release channel incorporated into planar lipid bilayers by stabilizing a long closed state. Sphingosine-1-PO4 and C6 to C18 ceramides of sphingosine had no significant effect on [3H]ryanodine binding to cardiac or skeletal muscle SR membranes. Saturation of the double bond at positions 4-5 decreased the ability of the sphingolipid bases to inhibit [3H]ryanodine binding 2-3 fold compared to sphingosine. In summary, our data indicate that other endogenous sphingolipid bases are capable of modulating the activity of the Ca2+ release channel and as a class possess a common mechanism of inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号