首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have designed and studied antisense oligodeoxynucleotides (oligonucleotides; oligos) which we call ‘pseudo-cyclic oligonucleotides’ (PCOs). PCOs contain two oligonucleotide segments attached through their 3′-3′- or 5′-5′-ends. One of the segments of the PCO is an antisense oligo complementary to a target mRNA, and the other is a short protective oligo that is 5–8 nucleotides long and complementary to the 3′- or 5′-end of the antisense oligo. As a result of complementarity between the antisense and protective oligo segments, PCOs form intramolecular pseudo-cyclic structures in the absence of the target RNA. The antisense oligo segment of PCOs used for the studies described here is complementary to an 18-nucleotide-long site on the mRNA of the protein kinase A regulatory subunit RI (PKA-RI). Thermal melting studies of PCOs in the absence and presence of the complementary RNA suggest that the pseudo-cyclic structures formed in the absence of the target RNA dissociate, bind to the target RNA, and form heteroduplexes. The results of RNase H cleavage assays suggest that PCOs bind to complementary RNA and activate RNase H in a manner similar to that of an 18-mer conventional antisense PS-oligo. In snake venom (a 3′-exonuclease) or spleen (a 5′-exonuclease) phosphodiesterase digestion studies, PCOs are more stable than conventional antisense oligos because of the presence of 3′-3′- or 5′-5′-linkages and the formation of intramolecular pseudo-cyclic structures. PCOs with a phosphorothioate antisense oligo segment inhibited cell growth of MDA-MB-468 and GEO cancer cell lines similar to that of the conventional antisense PS-oligo, suggesting efficient cellular uptake and target binding. The nuclease stability studies in mice suggest that PCOs have higher in vivo stability than antisense PS-oligos. The studies in mice showed similar pharmacokinetic and tissue distribution profiles for PCOs to those of antisense PS-oligos in general, but rapid elimination from selected tissues.  相似文献   

2.
3.
Molecular beacon is a DNA probe containing a sequence complementary to the target that is flanked by self-complementary termini, and carries a fluorophore and a quencher at the ends. We used the fluorescein and dabcyl as fluorophore and quencher respectively, and studied with DFT calculations at the GGA/DNP level, and taking into account DFT dispersion corrections by the Grimme and Tkatchenko-Scheffler (TS) schemes, the distance, where the most favorable energetic interaction between the fluorophore and quencher in conjugated form occurs. This distance occurs at a separation distance of 29.451?? between the centers of Dabcyl and fluorescein employing the TS DFT dispersion correction scheme, indicating FRET efficiency around 94.28?%. The calculated emission spectra of the conjugated pair in water indicated that the emission and absorption spectrum overlap completely and thus no fluorescence can be observed due to the fluorescence resonance energy transfer (FRET) effect. The DFT results confirmed the experimentally observing fluorescence quenching of the fluorescein-dabcyl conjugated system by FRET.  相似文献   

4.
L G Lee  C R Connell    W Bloch 《Nucleic acids research》1993,21(16):3761-3766
Nick-translation PCR was performed with fluorogenic probes. Two probes were used: one complementary to a sequence containing the F508 codon of the normal human cystic fibrosis (CF) gene (wt DNA) and one complementary to a sequence containing the delta F508 three base pair deletion (mut DNA). Each probe contained a unique and spectrally resolvable fluorescent indicator dye at the 5' end and a common quencher dye attached to the seventh nucleotide from the 5' end. The F508/delta F508 site was located between the indicator and quencher. The probes were added at the start of a PCR containing mut DNA, wt DNA or heterozygous DNA and were degraded during thermal cycling. Although both probes were degraded, each probe generated fluorescence from its indicator dye only when the sequence between the indicator and quencher dyes was perfectly complementary to target. The identify of the target DNA could be determined from the post-PCR fluorescence emission spectrum.  相似文献   

5.
The use of fluorescent nucleic acid hybridization probes that generate a fluorescence signal only when they bind to their target enables real-time monitoring of nucleic acid amplification assays. Real-time nucleic acid amplification assays markedly improves the ability to obtain qualitative and quantitative results. Furthermore, these assays can be carried out in sealed tubes, eliminating carryover contamination. Fluorescent nucleic acid hybridization probes are available in a wide range of different fluorophore and quencher pairs. Multiple hybridization probes, each designed for the detection of a different nucleic acid sequence and each labeled with a differently colored fluorophore, can be added to the same nucleic acid amplification reaction, enabling the development of high-throughput multiplex assays. In order to develop robust, highly sensitive and specific real-time nucleic acid amplification assays it is important to carefully select the fluorophore and quencher labels of hybridization probes. Selection criteria are based on the type of hybridization probe used in the assay, the number of targets to be detected, and the type of apparatus available to perform the assay. This article provides an overview of different aspects of choosing appropriate labels for the different types of fluorescent hybridization probes used with different types of spectrofluorometric thermal cyclers currently available.  相似文献   

6.
Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5′-end and a non-fluorescent quencher at the 3′-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2–4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB–quencher interaction and concealment of the MGB moiety inside the minor groove.  相似文献   

7.
8.
We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5′ fluorophore and 3′ quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells.  相似文献   

9.
Real-time PCR assays have recently been developed for diagnostic and research purposes. Signal generation in real-time PCR is achieved with probe designs that usually depend on exonuclease activity of DNA polymerase (e.g. TaqMan probe) or oligonucleotide hybridization (e.g. molecular beacon). Probe design often needs to be specifically tailored either to tolerate or to differentiate between sequence variations. The conventional probe technologies offer limited flexibility to meet these diverse requirements. Here, we introduce a novel partially double-stranded linear DNA probe design. It consists of a hybridization probe 5'-labeled with a fluorophore and a shorter quencher oligo of complementary sequence 3'-labeled with a quencher. Fluorescent signal is generated when the hybridization probe preferentially binds to amplified targets during PCR. This novel class of probe can be thermodynamically modulated by adjusting (i) the length of hybridization probe, (ii) the length of quencher oligo, (iii) the molar ratio between the two strands and (iv) signal detection temperature. As a result, pre-amplification signal, signal gain and the extent of mismatch discrimination can be reliably controlled and optimized. The applicability of this design strategy was demonstrated in the Abbott RealTime HIV-1 assay.  相似文献   

10.
Aptamers have many advantages, such as simple synthesis, good stability, high binding affinity and wide applicability, making them suitable candidates for protein detection. Since the disease-related protein may be present in very small amounts in biological samples, the development of amplification paths for aptasensors is essential. In this paper, we develop a simple and enzyme-free amplified aptasensor for protein detection via target-catalyzed hairpin assembly. This aptasensor contains two DNA hairpins termed as H1 and H2. H1, which is modified at its 5' and 3' ends with a fluorophore and a quencher respectively, consists of the aptamer sequence of human thrombin. Meanwhile, H2 is partially complementary to H1. These two hairpins H1 and H2 interact slowly with each other. Upon the addition of target protein, it can facilitate the opening of the hairpin structure of H1 and thus accelerate the hybridization between H1 and H2, resulting in the significant fluorescence enhancement of the system. By monitoring the change in fluorescence intensity, we could detect the target protein with high sensitivity. The detection limit of this aptasensor is 20 pM, which is more than two orders of magnitude lower than that of reported unamplified aptasensors. Furthermore, this amplified aptasensor shows high selectivity toward its target protein. Thus, the proposed aptasensor could be used as a simple, sensitive and selective platform for target protein detection.  相似文献   

11.
Wavelength-shifting molecular beacons   总被引:14,自引:0,他引:14  
We describe wavelength-shifting molecular beacons, which are nucleic acid hybridization probes that fluoresce in a variety of different colors, yet are excited by a common monochromatic light source. The twin functions of absorption of energy from the excitation light and emission of that energy in the form of fluorescent light are assigned to two separate fluorophores in the same probe. These probes contain a harvester fluorophore that absorbs strongly in the wavelength range of the monochromatic light source, an emitter fluorophore of the desired emission color, and a nonfluorescent quencher. In the absence of complementary nucleic acid targets, the probes are dark, whereas in the presence of targets, they fluoresce-not in the emission range of the harvester fluorophore that absorbs the light, but rather in the emission range of the emitter fluorophore. This shift in emission spectrum is due to the transfer of the absorbed energy from the harvester fluorophore to the emitter fluorophore by fluorescence resonance energy transfer, and it only takes place in probes that are bound to targets. Wavelength-shifting molecular beacons are substantially brighter than conventional molecular beacons that contain a fluorophore that cannot efficiently absorb energy from the available monochromatic light source. We describe the spectral characteristics of wavelength-shifting molecular beacons, and we demonstrate how their use improves and simplifies multiplex genetic analyses.  相似文献   

12.
A novel probe (Smart probe) has been developed for nucleic acid detection. The smart probe is an oligodeoxyribonucleotide carrying a fluorophore and an intercalator internally. Fluorescence of the smart probe is quenched by the intercalator in the absence of target sequence. While upon hybridization the probe emits greater fluorescence due to the interference of quenching by intercalation. The smart probe has been shown to recognize a single base mismatch in the double-stranded form without utilizing thermal stability difference of hybrids.  相似文献   

13.
Sun M  Shangguan D  Ma H  Nie L  Li X  Xiong S  Liu G  Thiemann W 《Biopolymers》2003,72(6):413-420
A new fluorescent probe for PbII, p-nitrophenyl 3H-phenoxazin-3-one-7-yl phosphoric acid (NPPA), was designed and synthesized by linking resorufin (serving as a fluorophore and electron acceptor) to p-nitrophenol (serving as a fluorescence quencher and electron donor) through phosphodiester bonds. When NPPA was irradiated with light, intramolecular fluorescence self-quenching took place because of the photoinduced electron transfer from the donor to the acceptor. However, upon the addition of PbII, the phosphate ester bonds in the probe were cleaved and the fluorophore was released, accompanying the retrievement of fluorescence.  相似文献   

14.
Due to its highly conserved zinc fingers and its nucleic acid chaperone properties which are critical for HIV-1 replication, the nucleocapsid protein (NC) constitutes a major target in AIDS therapy. Different families of molecules targeting NC zinc fingers and/or inhibiting the binding of NC with its target nucleic acids have been developed. However, their limited specificity and their cellular toxicity prompted us to develop a screening assay to target molecules able to inhibit NC chaperone properties, and more specifically the initial NC-promoted destabilization of the nucleic acid secondary structure. Since this destabilization is critically dependent on the properly folded fingers, the developed assay is thought to be highly specific. The assay was based on the use of cTAR DNA, a stem–loop sequence complementary to the transactivation response element, doubly labelled at its 5′ and 3′ ends by a rhodamine 6G fluorophore and a fluorescence quencher, respectively. Addition of NC(12-55), a peptide corresponding to the zinc finger domain of NC, to this doubly-labelled cTAR, led to a partial melting of the cTAR stem, which increases the distance between the two labels and thus, restores the rhodamine 6G fluorescence. Thus, positive hits were detected through the decrease of rhodamine 6G fluorescence. An “in-house” chemical library of 4800 molecules was screened and five compounds with IC50 values in the micromolar range have been selected. The hits were shown by mass spectrometry and fluorescence anisotropy titration to prevent binding of NC(12-55) to cTAR through direct interaction with the NC folded fingers, but without promoting zinc ejection. These non-zinc ejecting NC binders are a new series of anti-NC molecules that could be used to rationally design molecules with potential anti-viral activities.  相似文献   

15.
We report here an extension of homogeneous assays based on fluorescence intensity and lifetime measuring on DNA hybridization. A novel decay probe that allows simple one-step nucleic acid detection with subnanomolar sensitivity, and is suitable for closed-tube applications, is introduced. The decay probe uses fluorescence resonance energy transfer (FRET) between a europium chelate donor and an organic fluorophore acceptor. The substantial change in the acceptor emission decay time on hybridization with the target sequence allows the direct separation of the hybridized and unhybridized probe populations in a time-resolved measurement. No additional sample manipulation or self-hybridization of the probes is required. The wavelength and decay time of a decay probe can be adjusted according to the selection of probe length and acceptor fluorophore, thereby making the probes applicable to multiplexed assays. Here we demonstrate the decay probe principle and decay probe-based, one-step, dual DNA assay using celiac disease-related target oligonucleotides (single-nucleotide polymorphisms [SNPs]) as model analytes. Decay probes showed specific response for their complementary DNA target and allowed good signal deconvolution based on simultaneous optical and temporal filtering. This technique potentially could be used to further increase the number of simultaneously detected DNA targets in a simple one-step homogeneous assay.  相似文献   

16.
To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3′ amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5′ nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format.  相似文献   

17.
We describe snap-to-it probes, a novel probe technology to enhance the hybridization specificity of natural and unnatural nucleic acid oligomers using a simple and readily introduced structural motif. Snap-to-it probes were prepared from peptide nucleic acid (PNA) oligomers by modifying each terminus with a coordinating ligand. The two coordinating ligands constrain the probe into a macrocyclic configuration through formation of an intramolecular chelate with a divalent transition metal ion. On hybridization with a DNA target, the intramolecular chelate in the snap-to-it probe dissociates, resulting in the probe ‘snapping-to’ and binding the target nucleic acid. Thermal transition analysis of snap-to-it probes with complementary and single-mismatch DNA targets revealed that the transition between free and target-bound probe conformations was a reversible equilibrium, and the intramolecular chelate provided a thermodynamic barrier to target binding that resulted in a significant increase in mismatch discrimination. A 4–6°C increase in specificity (ΔTm) was observed from snap-to-it probes bearing either terminal iminodiacetic acid ligands coordinated with Ni2+, or terminal dihistidine and nitrilotriacetic acid ligands coordinated with Cu2+. The difference in specificity of the PNA oligomer relative to DNA was more than doubled in snap-to-it probes. Snap-to-it probes labeled with a fluorophore-quencher pair exhibited target-dependent fluorescence enhancement upon binding with target DNA.  相似文献   

18.
In order to rationally select and design probes for real-time PCR, we have determined the influence of the overhang region of the complementary strand on the resulting fluorescence from a hybridising probe. A series of target oligonucleotides, each with a unique 3' overhang (4 bases), was hybridised to either 5' fluorescein (FAM)- or Alexa-488-labelled probes, and the changes in fluorescence properties were monitored. We found that the number of guanine bases in the overhang region of the target oligonucleotides was proportional to the amount of fluorescence quenching observed for both the FAM and Alexa-488 dyes. FAM appeared to be more sensitive to guanine-induced quenching with three and four guanine bases resulting in greater than a twofold decrease in the quantum yield of the fluorophore compared to the no-overhang target. In addition, we found that adenine bases caused fluorescence quenching of the Alexa-488-labelled probe, whereas the FAM-labelled probe appeared insensitive. The quenching data, generated with the steady-state fluorescence measurements, displayed a linear correlation with that obtained using a fluorescent thermal cycler, suggesting the applicability to real-time PCR measurements. Anisotropy data from the series of duplexes correlated with the fluorescence quantum yield, suggesting that quenching was accompanied by increased dye mobility.  相似文献   

19.
Molecular beacons are hairpin-shaped, single-stranded oligonucleotides constituting sensitive fluorescent DNA probes widely used to report the presence of specific nucleic acids. In its closed form the stem of the hairpin holds the fluorophore covalently attached to one end, close to the quencher, which is covalently attached to the other end. Here we report that in the closed form the fluorophore and the quencher form a ground state intramolecular heterodimer whose spectral properties can be described by exciton theory. Formation of the heterodimers was found to be poorly sensitive to the stem sequence, the respective positions of the dyes and the nature of the nucleic acid (DNA or RNA). The heterodimer allows strong coupling between the transition dipoles of the two chromophores, leading to dramatic changes in the absorption spectrum that are not compatible with a Förster-type fluorescence resonance energy transfer (FRET) mechanism. The excitonic heterodimer and its associated absorption spectrum are extremely sensitive to the orientation of and distance between the dyes. Accordingly, the application of molecular beacons can be extended to monitoring short range modifications of the stem structure. Moreover, the excitonic interaction was also found to operate for doubly end-labeled duplexes.  相似文献   

20.
A chiral peptide nucleic acid (PNA) beacon containing a C-5 modified monomer based on L-lysine was synthesized. The terminal amino group of the lysine side chain was linked to a spacer for future applications on surfaces. The PNA beacon bears a carboxyfluorescein fluorophore and a dabcyl quencher at opposite ends. The DNA binding properties were compared with those of a homologous PNA beacon containing only achiral monomers. Both beacons underwent a fluorescence increase in the presence of complementary DNA, with higher efficiency and higher selectivity (evaluated using single mismatched DNA sequences) observed for the chiral monomer containing PNA. Ion exchange (IE) HPLC with fluorimetric detection was used in combination with the beacon for the selective detection of complementary DNA. A fluorescent peak corresponding to the PNA beacon:DNA duplex was observed at a very low detection limit (1 nM). The discriminating capacity of the chiral PNA beacon for a single mismatch was found to be superior to those observed with the unmodified one, thus confirming the potency of chirality for increasing the affinity and specificity of DNA recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号