首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
DNA templates amplified by polymerase chain reaction in thin polyacrylamide gels form diffusion-constrained amplicons called "polonies" (polymerase colonies) that have been used to phase DNA haplotypes over long distances, to analyse RNA splice variants, and to assay other phenomena of biological interest. We present two sets of mathematical models, one for single polony growth (SPGM) and one for two polony interaction (TPIM), that will be used to optimize polony technology. The models provide detailed predictions of polony yield, concentration profiles, growth of isolated polonies, and the interaction of neighboring polonies. The TPIM explains an experimental observation that nearby polonies deform against each other rather than interpenetrate, an effect important for optimizing polony protocols. However, the TPIM also predicts that polonies may invade each other with a complex geometry when sufficiently close. Polonies are also of interest as simple abiotic systems that exhibit lifelike properties of self-organization, growth, and development, and the models may also apply to biological phenomena involving propagation through tethering and diffusion. Our polony modeling software is available at our web site.  相似文献   

2.
It is possible to perform a combined amplification and sequencing reaction ('DEXAS') directly from complex DNA mixtures by using two thermostable DNA polymerases, one that favours the incorporation of deoxynucleotides over dideoxynucleotides, and one which has a decreased ability to discriminate between these two nucleotide forms. During cycles of thermal denaturation, annealing and extension, the former enzyme primarily amplifies the target sequence whereas the latter enzyme primarily performs a sequencing reaction. This method allows the determination of single-copy nuclear DNA sequences from amounts of human genomic DNA comparable to those used to amplify nucleotide sequences by the polymerase chain reaction. Thus, DNA sequences can be easily determined directly from total genomic DNA.  相似文献   

3.
We describe a method to clone and amplify DNA by performing the polymerase chain reaction (PCR) in a thin polyacrylamide film poured on a glass microscope slide. The polyacrylamide matrix retards the diffusion of the linear DNA molecules so that the amplification products remain localized near their respective templates. At the end of the reaction, a number of PCR colonies, or 'polonies', have formed, each one grown from a single template molecule. As many as 5 million clones can be amplified in parallel on a single slide. If an Acrydite modification is included at the 5' end of one of the primers, the amplified DNA will be covalently attached to the polyacrylamide matrix, allowing further enzymatic manipulations to be performed on all clones simultaneously. We describe techniques to make replicas of these polony slides, and high throughput sequencing protocols for this technology. Other applications are also discussed.  相似文献   

4.
Cycle sequencing is the workhorse of DNA sequencing projects, allowing the production of large amounts of product from relatively little template. This cycling regime, which is aimed at linear growth of the desired products, can also produce artifacts by exponential amplification of minor side-products. These artifacts can interfere with sequence determination. In an attempt to allow linear but prevent exponential growth of products, and thus eliminate artifacts, we have investigated the use of primers containing modified residues that cannot be replicated by DNA polymerase. Specifically, we have used primers containing 2'- O -methyl RNA residues or abasic residues. Oligomers consisting of six DNA residues and 20 2'- O -methyl RNA residues, with the DNA residues located at the 3'-end, primed as efficiently as DNA primers but would not support exponential amplification. Oligonucleotides containing fewer DNA residues were not used as efficiently as primers. DNA primers containing a single abasic site located six residues from the 3'-end also showed efficient priming ability without yielding exponential amplification products. Together these results demonstrate that certain types of modified primers can be used to eliminate artifacts in DNA sequencing. The technique should be particularly useful in protocols involving large numbers of cycles, such as direct sequencing of BAC and genomic DNA.  相似文献   

5.
Numerous applications in molecular biology and genomics require characterization of mutant DNA molecules present at low levels within a larger sample of non-mutant DNA. This is often achieved either by selectively amplifying mutant DNA, or by sequencing all the DNA followed by computational identification of the mutant DNA. However, selective amplification is challenging for insertions and deletions (indels). Additionally, sequencing all the DNA in a sample may not be cost effective when only the presence of a mutation needs to be ascertained rather than its allelic fraction. The MutS protein evolved to detect DNA heteroduplexes in which the two DNA strands are mismatched. Prior methods have utilized MutS to enrich mutant DNA by hybridizing mutant to non-mutant DNA to create heteroduplexes. However, the purity of heteroduplex DNA these methods achieve is limited because they can only feasibly perform one or two enrichment cycles. We developed a MutS-magnetic bead system that enables rapid serial enrichment cycles. With six cycles, we achieve complete purification of heteroduplex indel DNA originally present at a 5% fraction and over 40-fold enrichment of heteroduplex DNA originally present at a 1% fraction. This system may enable novel approaches for enriching mutant DNA for targeted sequencing.  相似文献   

6.
Site-specific mutagenesis and directional subcloning were accomplished by using the polymerase chain reaction to generate products that can recombine to form circular DNA. This DNA was transfected into E. coli without phosphorylation of primers, restriction enzyme digestion or ligation. Specifically, the polymerase chain reaction was used to generate products that when combined, denatured and reannealed, form double-stranded DNA with discrete, cohesive single-stranded ends. The generation of these cohesive ends of DNA permits the formation of precise, directional DNA joints without dependence on enzyme restriction sites. The primers were designed such that these cohesive single-stranded ends annealed to form circular DNA. The recombinant of interest was generated following only 14 amplification cycles. These recombinant circles of DNA were directly transfected into E. coli. In the mutagenesis protocol, the desired mutant was obtained at 83%-100% efficiency. Unwanted mutations were not detected, indicating a less than 0.025% nucleotide misincorporation frequency. In the directional subcloning protocol, inserts were positioned precisely in the recipient plasmid and were in the correct orientation. One unwanted mutation was detected after sequencing 900 bases, indicating a 0.11% nucleotide misincorporation frequency. Each manipulation, from setting up for the DNA amplification to transfection into E. coli. can easily be accomplished in one day.  相似文献   

7.
Taq DNA聚合酶具有反应速度快、温度作用范围广及良好的续进性等特点,可视为一种理想的DNA顺序分析酶。本文首先对非对称性PCR扩增过程中单、双链DNA产物的积累情况进行了分析,然后采用标记延伸二步法,对Taq DNA聚合酶的性质及影响因素进行分析。为进一步改进Taq DNA聚合酶测序的方法,本反应建立了“Klenow-型”的直接掺入标记同位素测序法,即在反应液中加入与标记核苷酸相应的一定浓度的冷dNTP。此法不但解决了二步法中引物后部分DNA顺序无法读出的缺点,而且简化了反应步骤,亦能得到令人满意的顺序分析结果,每次可读出至少400碱基的序列。  相似文献   

8.
The mechanisms of formation of intrachromosomal amplifications in tumours are still poorly understood. By using quantitative polymerase chain reaction, DNA sequencing, chromosome walking, in situ hybridization on metaphase chromosomes and whole-genome analysis, we studied two cancer cell lines containing an MYC oncogene amplification with acquired copies ectopically inserted in rearranged chromosomes 17. These intrachromosomal amplifications result from the integration of extrachromosomal DNA molecules. Replication stress could explain the formation of the double-strand breaks involved in their insertion and in the rearrangements of the targeted chromosomes. The sequences of the junctions indicate that homologous recombination was not involved in their formation and support a non-homologous end-joining process. The replication stress-inducible common fragile sites present in the amplicons may have driven the intrachromosomal amplifications. Mechanisms associating break-fusion-bridge cycles and/or chromosome fragmentation may have led to the formation of the uncovered complex structures. To our knowledge, this is the first characterization of an intrachromosomal amplification site at nucleotide resolution.  相似文献   

9.
A simple and reliable procedure for the amplification of single-stranded DNA suitable for sequencing is described. This procedure employs the polymerase chain reaction and implements modifications pertaining to the purification of the double-stranded DNA product prior to single-stranded DNA amplification. The most consistent sequencing reactions are obtained when the double-stranded DNA product is purified by centrifugation with a microconcentrator prior to single-stranded DNA amplification and the overall amount of specific primers and number of cycles used, in both single-stranded and double-stranded DNA polymerase chain reactions, are reduced.  相似文献   

10.
We have developed a novel, isothermal DNA amplification strategy that employs phi29 DNA polymerase and rolling circle amplification to generate high-quality templates for DNA sequencing reactions. The TempliPhi DNA amplification kits take advantage of the fact that cloned DNA is typically obtained in circular vectors, which are readily replicated in vitro using phi29 DNA polymerase by a rolling circle mechanism. This single subunit, proofreading DNA polymerase has excellent processivity and strand displacement properties for generation of multiple, tandem double-stranded copies of the circular DNA, generating as much as 10(7)-fold amplification. Large amounts of product (1-3 microg) can be obtained in as little as 4 hours. Input DNA can be as little as 0.01 ng of purified plasmid DNA, a single bacterial colony, or a 1 microL of a saturated overnight culture. Additionally, the presence of an associated proof reading function within the phi29 DNA polymerase ensures high-fidelity amplification. Once completed, the product DNA can be used directly in sequencing reactions. Additionally, the properties of phi29 DNA polymerase and its use in applications such as amplification ofhuman genomic DNA for genotyping studies is discussed.  相似文献   

11.
A polymerase stop assay has been developed to determine the DNA nucleotide sequence specificity of covalent modification by antineoplastic agents using the thermostable DNA polymerase from Thermus aquaticus and synthetic labelled primers. The products of linear amplification are run on sequencing gels to reveal the sites of covalent drug binding. The method has been studied in detail for a number of agents including nitrogen mustards, platinum analogues and mitomycin C, and the sequence specificities obtained accord with those obtained by other procedures. The assay is advantageous in that it is not limited to a single type of DNA lesion (as in the piperidine cleavage assay for guanine-N7 alkylation), does not require a strand breakage step, and is more sensitive than other primer extension procedures which have only one cycle of polymerization. In particular the method has considerable potential for examining the sequence selectivity of damage and repair in single copy gene sequences in genomic DNA from cells.  相似文献   

12.
Improvements to oligonucleotide fingerprinting of rRNA genes (OFRG) were obtained by implementing polony microarray technology. OFRG is an array-based method for analyzing microbial community composition. Polonies are discrete clusters of DNA, produced by solid-phase PCR in hydrogels, and derived from individual, spatially isolated DNA molecules. The advantages of a polony-based OFRG method include higher throughput and reductions in the PCR-induced errors and compositional skew inherent in all other PCR-based community composition methods, including high-throughput sequencing of rRNA genes. Given the similarities between polony microarrays and certain aspects of sequencing methods such as the Illumina platform, we suggest that if concepts presented in this study were implemented in high-throughput sequencing protocols, a reduction of PCR-induced errors and compositional skew may be realized.  相似文献   

13.
As part of an ongoing drug development programme, this paper describes the sequence specificity and time course of DNA adduct formation for a series of novel DNA-targeted analogues of cis-diaminedichloroplatinum(II) (cisplatin) (9-aminoacridine-4-carboxamide Pt complexes) in intact HeLa cells. The sequence specificity of DNA damage caused by cisplatin and analogues in human (HeLa) cells was studied using Taq DNA polymerase and a linear amplification/polymerase stop assay. Primer extension is inhibited by a Pt-DNA adduct, and hence the sites of these lesions can be analysed on DNA sequencing gels. The repetitive alphoid DNA sequence was used as the target DNA in human cells. The 9-aminoacridine-4-carboxamide Pt complexes exhibited a markedly different sequence specificity relative to cisplatin and other analogues. The sequence specificity of the 9-aminoacridine-4-carboxamide Pt complexes is shifted away from a preference for runs of guanines. The 9-aminoacridine-4-carboxamide Pt complexes have an enhanced preference for GA dinucleotides. This is the first occasion that an altered DNA sequence specificity has been demonstrated for a cisplatin analogue in human cells. A time course of DNA damage revealed that the DNA-targeted Pt complexes, consisting of four 9-aminoacridine-4-carboxamide Pt complexes and one acridine-4-carboxamide Pt complex, damaged DNA more rapidly compared to cisplatin and non-targeted analogues. A comparison of the time taken to reach half the maximum relative intensity indicated that the DNA-targeted Pt complexes reacted approximately 4-fold faster than cisplatin and the non-targeted analogues.  相似文献   

14.
Effect of highly fragmented DNA on PCR.   总被引:3,自引:1,他引:2       下载免费PDF全文
We characterized the behavior of polymerase chain reactions (PCR) using degraded DNA as a template. We first demonstrated that fragments larger than the initial template fragments can be amplified if overlapping fragments are allowed to anneal and extend prior to routine PCR. Amplification products increase when degraded genomic DNA is pretreated by polymerization in the absence of specific primers. Secondly, we measured nucleotide uptake as a function of template DNA degradation. dNTP incorporation initially increases with increasing DNA fragmentation and then declines when the DNA becomes highly degraded. We demonstrated that dNTP uptake continues for >10 polymerization cycles and is affected by the quality and quantity of template DNA and by the amount of substrate dNTP. These results suggest that although reconstruction of degraded DNA may allow amplification of large fragments, reconstructive polymerization and amplification polymerization may compete. This was confirmed in PCR where the addition of degraded DNA reduced the resultant product. Because terminal deoxynucleotidyl transferase activity of Taq polymerase may inhibit 3' annealing and restrict the length of template reconstruction, we suggest modified PCR techniques which separate reconstructive and amplification polymerization reactions.  相似文献   

15.
cis-Diamminedichloroplatinum(II) (cisplatin) forms adducts with DNA. The sequence specificity of formation of cisplatin adducts with plasmid DNA was investigated using Taq DNA polymerase. This procedure involved the extension of an oligonucleotide primer by Taq DNA polymerase up to the cisplatin adduct. Using thermal cycling, this process is repeated many times in order to amplify the signal. The products of this linear amplification can then be examined on DNA sequencing gels, and the sequence specificity of cisplatin adduct formation can be determined to the exact base pair. In the pUC8 plasmid, the sequences that produced the most intense damage sites (as determined by densitometry) were runs of two or more Gs. Adducts could also be detected at GA, AG, and GC dinucleotides. Four other cisplatin analogues were also tested in the system. Two of these analogues contained an attached intercalating chromophore, and the strong damage with these compounds was similar to that found for cisplatin, but the medium and weak damage tended to be different. Weak damage was also detected with trans-diamminedichloroplatinum(II). With this compound, a large number of the damage sites were at the CG dinucleotide. This technique represents a simple, accurate, and quick method for determining the sequence specificity of damage for a cisplatin analogue in any DNA sequence.  相似文献   

16.
The sequence specificity of DNA damage caused by cis-diamminedichloroplatinum(II) (cisplatin) and four analogues in human (HeLa) cells was studied using Taq DNA polymerase and a linear amplification system. The primer extension is inhibited by the drug-DNA adducts, and hence the sites of these lesions can be analyzed on DNA sequencing gels. The repetitive alphoid DNA was used as the target DNA in human cells. A comparison was made between adduct formation in human cells and in purified DNA. The sequence-specific position and relative intensity of damage was similar in both systems for cisplatin, dichloro(ethylenediammine)platinum(II) (PtenCl2), and N-[3-N-(ethylenediamino)propyl]acridine-4-carboxamidedichloropl atinum(II) (4AcC3PtenCl2). However, no DNA damage could be detected in cells for trans-diamminedichloroplatinum(II) (transPt) or N-[3-N-(ethylenediamino)propyl]acridine-2-carboxamide-dichloroplat inum(II) (2AcC3PtenCl2) despite the ability of these latter analogues to damage purified DNA. Cisplatin, PtenCl2, and 4AcC3PtenCl2, which significantly damaged DNA inside cells, also show antitumor activity in mouse models. However, transPt and 2AcC3PtenCl2, which did not detectably damage DNA inside cells, did not show such antitumor activity. This correlation between intracellular DNA damaging ability and in vivo antitumor activity indicates the potential use of the human cells/Taq DNA polymerase/linear amplification technique as a convenient method for screening new cisplatin analogues for useful chemotherapeutic activity.  相似文献   

17.
PCR permits the exponential and sequence-specific amplification of DNA, even from minute starting quantities. PCR is a fundamental step in preparing DNA samples for high-throughput sequencing. However, there are errors associated with PCR-mediated amplification. Here we examine the effects of four important sources of error—bias, stochasticity, template switches and polymerase errors—on sequence representation in low-input next-generation sequencing libraries. We designed a pool of diverse PCR amplicons with a defined structure, and then used Illumina sequencing to search for signatures of each process. We further developed quantitative models for each process, and compared predictions of these models to our experimental data. We find that PCR stochasticity is the major force skewing sequence representation after amplification of a pool of unique DNA amplicons. Polymerase errors become very common in later cycles of PCR but have little impact on the overall sequence distribution as they are confined to small copy numbers. PCR template switches are rare and confined to low copy numbers. Our results provide a theoretical basis for removing distortions from high-throughput sequencing data. In addition, our findings on PCR stochasticity will have particular relevance to quantification of results from single cell sequencing, in which sequences are represented by only one or a few molecules.  相似文献   

18.
Zhang X  Donnelly A  Lee I  Berdis AJ 《Biochemistry》2006,45(44):13293-13303
Translesion DNA synthesis represents the ability of a DNA polymerase to misinsert a nucleotide opposite a DNA lesion. Previous kinetic studies of the bacteriophage T4 DNA polymerase using a series of non-natural nucleotides suggest that pi-electron density of the incoming nucleotide substantially contributes to the efficiency of incorporation opposite an abasic site, a nontemplating DNA lesion. However, it is surprising that these nonhydrogen-bonding analogues can also be incorporated opposite natural templating DNA with variable degrees of efficiency. In this article, we describe attempts to achieve selectivity for incorporation opposite the abasic site through optimization of pi-electron density and shape of the nucleobase. Toward this goal, we report the synthesis and enzymatic characterization of two novel nucleotide analogues, 5-napthyl-indolyl-2'-deoxyriboside triphosphate (5-NapITP) and 5-anthracene-indolyl-2'-deoxyriboside triphosphate (5-AnITP). The overall catalytic efficiency for their incorporation opposite an abasic site is similar to that of other non-natural nucleotides such as 5-NITP and 5-PhITP that contain significant pi-electron density. As expected, the incorporation of either 5-NapITP or 5-AnITP opposite templating DNA is reduced and presumably reflects steric constraints imposed by the large size of the polycyclic aromatic moieties. Furthermore, 5-NapITP is a chain terminator of translesion DNA synthesis because the DNA polymerase is unable to extend beyond the incorporated non-natural nucleotide. In addition, idle turnover measurements confirm that 5-NapIMP is stably incorporated opposite damaged DNA, and this enhancement reflects the overall favorable incorporation kinetic parameters coupled with a reduction in excision by the exonuclease-proofreading activity of the enzyme. On the basis of these data, we provide a comprehensive assessment of the potential role of pi-electron surface area for nucleotide incorporation opposite templating and nontemplating DNA catalyzed by the bacteriophage T4 DNA polymerase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号