首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白质组学进展   总被引:45,自引:0,他引:45  
甄朱   《生物工程学报》2001,17(5):491-493
在蛋白质水平上定量、动态、整体性研究生物体的蛋白质组学 ,将在后基因组时代大大增进我们对基因功能的理解。简要介绍了蛋白质组学的概念、研究手段 ,及最新进展  相似文献   

2.
植物蛋白质组学研究进展   总被引:39,自引:0,他引:39       下载免费PDF全文
 蛋白质组学是后基因组时代功能基因组学研究的新兴学科和热点领域。该文简要介绍了蛋白质组学产生的科学背景、研究方法和研究内容。蛋白质组学研究方法主要有双向聚丙烯酰胺凝胶电泳(2D-PAGE)、质谱(Mass-spectrometric)技术、蛋白质芯片(Protein chips)技术、酵母双杂交系统(Yeast two-hybrid system)、植物蛋白质组数据库等。其应用的范围包括植物群体遗传学、在个体水平上植物对生物和非生物环境的适应机制、植物的发育和组织器官的分化过程,以及不同亚细胞结构在生理生态过程中的作用等诸多方面。同时对植物蛋白质组学的发展前景进行了展望。  相似文献   

3.
Proteomics, the global study of protein expression and characteristics, has recently emerged as a key component in the field of molecular analysis. The dynamic nature of proteins, from ion channels to chaperones, presents a challenge, yet the understanding of these molecules provides a rich source of information. When applying proteomic analysis directly to human tissue samples, additional difficulties arise. The following article presents an overview of the current proteomic tools used in the analysis of tissues, beginning with conventional methods such as western blot analysis and 2D polyacrylamide gel electrophoresis. The most current high-throughput techniques being used today are also reviewed. These include protein arrays, reverse-phase protein lysate arrays, matrix-assisted laser desorption/ionization, surface-enhanced laser desorption/ionization and layered expression scanning. In addition, bioinformatics as well as issues regarding tissue preservation and microdissection to obtain pure cell populations are included. Finally, future directions of the tissue proteomics field are discussed.  相似文献   

4.
Proteomics, the global study of protein expression and characteristics, has recently emerged as a key component in the field of molecular analysis. The dynamic nature of proteins, from ion channels to chaperones, presents a challenge, yet the understanding of these molecules provides a rich source of information. When applying proteomic analysis directly to human tissue samples, additional difficulties arise. The following article presents an overview of the current proteomic tools used in the analysis of tissues, beginning with conventional methods such as western blot analysis and 2D polyacrylamide gel electrophoresis. The most current high-throughput techniques being used today are also reviewed. These include protein arrays, reverse-phase protein lysate arrays, matrix-assisted laser desorption/ionization, surface-enhanced laser desorption/ionization and layered expression scanning. In addition, bioinformatics as well as issues regarding tissue preservation and microdissection to obtain pure cell populations are included. Finally, future directions of the tissue proteomics field are discussed.  相似文献   

5.
Proteomics research focuses on the identification and quantification of "all" proteins present in cells, organisms or tissue. Proteomics is technically complicated because it encompasses the characterization and functional analysis of all proteins that are expressed by a genome. Moreover, because the expression levels of proteins strongly depend on complex regulatory systems, the proteome is highly dynamic. This review focuses on the two major proteomics methodologies, one based on 2D gel electrophoresis and the other based on liquid chromatography coupled to mass spectrometry. The recent developments of these methodologies and their application to quantitative proteomics are described. The model system Saccharomyces cerevisiae is considered to be the optimal vehicle for proteomics and we review studies investigating yeast adaptation to changes in (nutritional) environment.  相似文献   

6.
Basic science research in hematology has been determining the functions of gene products using classical approaches that typically involve studying one or a few genes at a time. Proteomics, defined as the study of protein properties on a large scale, provides tools to globally analyze malignant hematologic cells. A major challenge in cancer therapy is the identification of drugs that kill tumor cells while preserving normal cells. Differential display via proteomics enables analysis of direct as well as side-effects of drugs at a molecular level. Proteomics also allows a better understanding of cell signaling pathways involved during apoptosis in hematologic cells. Storing the information in a 2D electrophoresis database enhances the efficiency of proteome research on malignant cells. Finally, the work needed to be carried out on proteomic analysis prior to routine clinical adoption is discussed, and the necessity for multi-institutional collaborations is emphasized.  相似文献   

7.
Basic science research in hematology has been determining the functions of gene products using classical approaches that typically involve studying one or a few genes at a time. Proteomics, defined as the study of protein properties on a large scale, provides tools to globally analyze malignant hematologic cells. A major challenge in cancer therapy is the identification of drugs that kill tumor cells while preserving normal cells. Differential display via proteomics enables analysis of direct as well as side-effects of drugs at a molecular level. Proteomics also allows a better understanding of cell signaling pathways involved during apoptosis in hematologic cells. Storing the information in a 2D electrophoresis database enhances the efficiency of proteome research on malignant cells. Finally, the work needed to be carried out on proteomic analysis prior to routine clinical adoption is discussed, and the necessity for multi-institutional collaborations is emphasized.  相似文献   

8.
9.
Wang J  Xue Y  Feng X  Li X  Wang H  Li W  Zhao C  Cheng X  Ma Y  Zhou P  Yin J  Bhatnagar A  Wang R  Liu S 《Proteomics》2004,4(1):136-150
The genome of Thermoanaerobacter tengcongensis is estimated to encode 2588 theoretical proteins. In this study, we have vitalized approximately 46% of the theoretical proteome experimentally using a proteomic strategy that combines three different methods, shotgun digestion plus high-performance liquid chromatography (HPLC) with ion-trap tandem mass spectrometry (shotgun-liquid chromatography (LC)/MS), one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) plus HPLC with ion-trap tandem mass spectrometry (one-dimensional electrophoresis (1DE)-LC/MS), and two-dimensional gel electrophoresis plus matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (2DE-MALDI-TOF-MS). Of the 1200 proteins identified, as few as 76 proteins were globally found by all three approaches, and notably, most of these proteins were in the soluble fraction. However, there were a number of unique proteins detected by one method only, suggesting that our strategy provides a means toward obtaining a comprehensive view of protein expression profile. Proteins from the major metabolic pathways are strongly represented on the map, and a number of these enzymes were identified by more than one proteomic method. Based upon the proteins identified in the present study, we are able to broaden the understanding of how T. tengcongensis survives under high temperature environment, whereas several of its properties can not be fully explained by genome data.  相似文献   

10.
High efficiency capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine the proteins extracted from Desulfovibrio vulgaris cells across six treatment conditions. While our previous study provided a proteomic overview of the cellular metabolism based on proteins with known functions [W. Zhang, M.A. Gritsenko, R.J. Moore, D.E. Culley, L. Nie, K. Petritis, E.F. Strittmatter, D.G. Camp II, R.D. Smith, F.J. Brockman, A proteomic view of the metabolism in Desulfovibrio vulgaris determined by liquid chromatography coupled with tandem mass spectrometry, Proteomics 6 (2006) 4286-4299], this study describes the global detection and functional inference for hypothetical D. vulgaris proteins. Using criteria that a given peptide of a protein is identified from at least two out of three independent LC-MS/MS measurements and that for any protein at least two different peptides are identified among the three measurements, 129 open reading frames (ORFs) originally annotated as hypothetical proteins were found to encode expressed proteins. Functional inference for the conserved hypothetical proteins was performed by a combination of several non-homology based methods: genomic context analysis, phylogenomic profiling, and analysis of a combination of experimental information, including peptide detection in cells grown under specific culture conditions and cellular location of the proteins. Using this approach we were able to assign possible functions to 20 conserved hypothetical proteins. This study demonstrated that a combination of proteomics and bioinformatics methodologies can provide verification of the expression of hypothetical proteins and improve genome annotation.  相似文献   

11.
Proteomics is a research area that has developed rapidly in the last decade. It studies the large‐scale characterization of the full protein components of a cell, a tissue, or a biological fluid. In the last decade, clinical proteomics has developed new technology and bioinformatics useful in identifying molecular markers of pathology; the next decade might be the era of proteomics. Seminal plasma (SP) represents a good sample for proteomic analysis in the evaluation of male fertility/infertility. SP is an acellular fluid conglomerate, comprised of contributions from the epididymis and accessory sexual glands. Human SP contains many proteins that are important to the successful fertilization of the oocyte by the spermatozoa. Proteomic studies have identified numerous seminal‐specific proteins, and recent reports have provided a further understanding of their function with respect to male fertility. Upon further validation, these proteins may be useful in the clinical distinction between fertility and infertility. This article reviews the proteomic methods, such as one dimensional polyacrylamide gel electrophoresis (1D–PAGE), two‐dimensional polyacrylamide gel electrophoresis (2D–PAGE), and mass spectrometry (MS), employed to detect human SP markers involved in fertility and infertility. As such, proteomic studies will help the development of new techniques to identify novel biomarkers for a better clinical diagnosis and treatment of male infertility. Mol. Reprod. Dev. 80: 350–357, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Many cell biologists wish to know the subcellular localization of proteins of interest. Proteomics methods have the potential to describe the entire protein content of organelles. However, practical limitations in organelle isolation and analysis of low abundance proteins have meant that organelle proteomics has had, until recently, only limited success. Some examples of quantitative proteomic methods and their use in the study of plant organelle proteomes are discussed here. It is concluded that 2D-difference gel electrophoresis (2D-DIGE) as well as differential isotope tagging strategies coupled to non-gel-based LC-MS are proving useful in this area of research.  相似文献   

13.
陈晓岚  池志强 《生命科学》2003,15(1):50-52,59
蛋白质组学是指对基因组编码的所有蛋白质进行大规模分析的一门学科,它分为表达蛋白质组学和功能蛋白质组学。新的蛋白质组学工具将为高度复杂的神经科学的研究提供便利。作者简述了表达蛋白质组学和功能蛋白质组学在这一领域的应用。  相似文献   

14.
Proteomics is a new scientific field aimed at the large-scale characterization of the protein constituents of biologic systems. It facilitates comparisons between different protein preparations by searching for minute differences in their protein expression repertoires and the patterns of their post-translational modifications. These attributes make proteomics perfectly suited for searching for proteins and peptides expressed exclusively or preferentially in cancer cells as candidates for cancer vaccines. The main proteomics technologies include 2D polyacrylamide gel electrophoresis, multidimensional high-performance liquid chromatography, mass spectrometry and protein arrays. Proteomics technologies used to analyze cancer culture cells, fresh tumor specimens, human leukocyte antigen peptides, serum and serum antibodies (serologic proteomics) have successfully identified tumor markers. Turning the potential vaccine candidates identified by proteomics technologies into clinical treatments awaits demonstration.  相似文献   

15.
Proteome profiling of human epithelial ovarian cancer cell line TOV-112D   总被引:3,自引:0,他引:3  
A proteome profiling of the epithelial ovarian cancer cell line TOV-112D was initiated as a protein expression reference in the study of ovarian cancer. Two complementary proteomic approaches were used in order to maximise protein identification: two-dimensional gel electrophoresis (2DE) protein separation coupled to matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and one-dimensional gel electrophoresis (1DE) coupled to liquid-chromatography tandem mass spectrometry (LC MS/MS). One hundred and seventy-two proteins have been identified among 288 spots selected on two-dimensional gels and a total of 579 proteins were identified with the 1DE LC MS/MS approach. This proteome profiling covers a wide range of protein expression and identifies several proteins known for their oncogenic properties. Bioinformatics tools were used to mine databases in order to determine whether the identified proteins have previously been implicated in pathways associated with carcinogenesis or cell proliferation. Indeed, several of the proteins have been reported to be specific ovarian cancer markers while others are common to many tumorigenic tissues or proliferating cells. The diversity of proteins found and their association with known oncogenic pathways validate this proteomic approach. The proteome 2D map of the TOV-112D cell line will provide a valuable resource in studies on differential protein expression of human ovarian carcinomas while the 1DE LC MS/MS approach gives a picture of the actual protein profile of the TOV-112D cell line. This work represents one of the most complete ovarian protein expression analysis reports to date and the first comparative study of gene expression profiling and proteomic patterns in ovarian cancer.  相似文献   

16.
适于小麦叶片蛋白质组分析的样品提取方法研究   总被引:2,自引:1,他引:2  
以‘铭贤169'小麦苗期叶片为材料,分别采用传统的TCA/丙酮沉淀法、酚提取-甲醇/醋酸铵沉淀法以及改进的TCA/丙酮沉淀-酚/SDS联合抽提法提取叶片总蛋白,进行双向电泳分离和胶体考染,以建立适用于小麦蛋白质组分析的样品制备方法.结果表明:TCA/丙酮沉淀法较酚提取-甲醇/醋酸铵沉淀法获得的蛋白杂质较少,在二维电泳图谱中的蛋白点较酚抽提-甲醇/醋酸铵沉淀法提取的蛋白点清晰且多.相比于以上2种提取蛋白样品方法,改进的TCA/丙酮沉淀-酚/SDS联合抽提法提取的小麦叶片蛋白杂质少、二维电泳图谱上的点明显增多、分辨率较高.所选小麦的代表性蛋白点能获得成功鉴定.该方法可推广应用于水稻叶片蛋白质组分析的样品提取.  相似文献   

17.
蛋白质组学研究中的双向电泳技术   总被引:26,自引:0,他引:26  
蛋白质组学研究已经成为后基因组时代的研究热点,其两大支柱是双向凝胶电泳技术和生物质谱技术。尽管双向电泳技术近几年已经取得了突破性进展,是当前蛋白质分离的最常用技术,但其本身还有一些难以克服的问题。随着质谱技术的快速发展,双向电泳逐渐成为蛋白质组学研究的瓶颈。本综述双向电泳主要技术步骤的现状、存在问题及其改进方向。  相似文献   

18.
蛋白质组学技术及其在生物医学上的应用   总被引:7,自引:0,他引:7  
蛋白质组学部分承用了创立于二十多年前的二维电泳技术。基于其高分辩能力 ,二维电泳主要用于分离和检测复杂混合物中的蛋白质。虽然没有获得更多的改进 ,但是二维电泳结合了通过质谱测定蛋白质的最新进展而成为蛋白质组学中的一项重要技术。随着人类基因组计划项目的完成及由此而产生的大量基因数据库和使用这些数据的生物信息技术 ,科学家们的下一个目标是解析生物体的完整蛋白质组 ,把蛋白质组学数据与基因组学数据关联起来并有机地结合而成为一项有力的工具以阐明病理学中的蛋白质功能、衰老的过程及发现新药目标蛋白质和疾病标识物等。文章综述了蛋白质组学技术的最新知识及其在生物医学研究中的潜在应用  相似文献   

19.
Revealing urologic diseases by proteomic techniques   总被引:1,自引:0,他引:1  
Proteomics, as the study of the proteomes of tissues and body fluids, has recently been introduced as a tool for revealing urologic diseases. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and surface-enhanced laser desorption/ionzation (SELDI) are two techniques used in proteomic studies. Among the many urologic diseases, the malignancies including prostate cancer, bladder cancer, and renal cancer are the subjects most often selected for proteomic analysis. Poor reproducibility is one of the difficulties that must be overcome in order for proteomic technology to be a robust tool.  相似文献   

20.
Proteomic dissection of plant responses to various pathogens   总被引:1,自引:0,他引:1       下载免费PDF全文
During their growth and development, plants are vulnerable to the effects of a variety of pathogens. Proteomics technology plays an important role in research studies of plant defense mechanisms by mining the expression changes of proteins in response to various biotic stresses. This review article provides a comprehensive overview of the latest developments in international proteomic research on plant biotic stress. It summarizes the methods commonly used in plant proteomic research to investigate biotic stress, analyze the protein responses of plants in adverse conditions, and reviews the applications of proteomics combined with transgenic technology in plant protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号