首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functions of antigen-presenting cells (APC) in the initiation of T cell activation was examined by culturing antigen-bearing guinea pig macrophages (M phi) with T cells obtained from antigen-primed animals. Although such antigen-bearing M phi stimulated primed syngeneic T cell DNA synthesis, as assessed by tritiated thymidine incorporation, paraformaldehyde fixation (0.15% for 1 min at 37 degrees C) abolished this capacity. Analysis with acridine orange staining indicated that fixed antigen-bearing M phi could not trigger primed syngeneic T cells to progress from the G0 to the G1 phase of the cell cycle. The addition of control non-antigen-bearing syngeneic or allogeneic M phi but not interleukin 1 or 2 to cultures of T cells and fixed APC permitted a proliferative response. Although the interaction between fixed antigen-bearing M phi and responding T cells was genetically restricted, there was no similar restriction for the supplemental control M phi. In fact, completely Ia-negative endothelial cells (EC) and fibroblasts (FB) could restore antigen responsiveness to cultures of fixed antigen-bearing M phi and syngeneic responding T cells, although they could not directly present antigen. Moreover, metabolically intact accessory cells, including Ia-negative EC and FB, could take up and process antigen to an immunogenic moiety, which fixed Ia-positive M phi could present to primed T cells. These data indicate that recognition of the antigen-Ia complex on an APC is necessary but not sufficient to trigger proliferation of freshly obtained primed T cells. The results additionally support the conclusion that APC carry out at least two separate functions necessary for the initiation of antigen-induced T cell activation. Not only must the APC display the antigen-Ia complex, but it must also convey another required effect. This influence, which apparently involved the establishment of cell to cell contact, was neither Ia nor antigen dependent and could only be provided by a metabolically intact cell. By contrast, genetically restricted antigen presentation could be accomplished by a fixed Ia-positive cell. Only when both the antigen-Ia complex and the influence of an intact accessory cell were provided by the same or different accessory cell were T cells triggered to enter the cell cycle.  相似文献   

2.
The role of accessory cells (AC) in the initiation of mitogen-induced T cell proliferation was examined by comparing the effect of intact macrophages (M phi) with that of 4-beta-phorbol 12-myristate 13-acetate (PMA). In high-density cultures, purified guinea pig T cells failed to proliferate in response to stimulation with phytohemagglutinin (PHA), concanavalin A (Con A), or PMA alone. The addition of M phi to PHA or Con A but not PMA-stimulated cultures restored T cell proliferation. The addition of PMA to high-density T cell cultures stimulated with PHA or Con A also permitted [3H]thymidine incorporation, but was less effective than intact M phi in this regard. This action of PMA was dependent on the small number of AC contaminating the T cell cultures as evidenced by the finding that PMA could not support mitogen responsiveness of T cells that had been depleted of Ia-bearing cells by planning, even when these cells were cultured at high density. When PMA was added to T cell cultures supported by optimal numbers of M phi, catalase-reversible suppression of responses was noted. Even in cultures containing catalase, PMA failed to enhance responsiveness above that supported by optimal numbers of M phi. A low-density culture system was used to examine in greater detail the possibility that PMA could completely substitute for M phi in promoting T cells activation. In low-density cultures, mitogen-induced T cell proliferation required intact M phi. PMA could not support responses even in cultures supplemented with interleukin 1-containing M phi supernatants or purified interleukin 2 alone or in combination. Similar results were found in high-density cultures of T cells depleted of Ia-bearing cells. These results support a model of T cell activation in which AC play at least two distinct roles. The initiation of the response requires a signal conveyed by an intact M phi, which cannot be provided by either a M phi supernatant factor or PMA. The response can be amplified by additional M phi or M phi supernatant factors. PMA can substitute for M phi in this regard and can provide the signal necessary for amplification of T cell proliferation supported by small numbers of intact AC.  相似文献   

3.
The effect of interferon-gamma (IFN-gamma) on endothelial cell (EC) and fibroblast (FB) class II major histocompatibility complex (MHC) gene product expression and antigen presenting ability was examined. Control FB did not express class II MHC gene products, whereas a small (less than 1%) population of passaged EC expressed class II gene products. IFN-gamma induced a comparable density of HLA-DR expression on nearly all EC and FB. IFN-gamma-treated EC and FB also expressed HLA-DP but at a lower density, whereas HLA-DQ expression was barely detectable on either cell type. Control FB were not able to stimulate allogeneic T4 cell DNA synthesis or function as antigen-presenting cells (APC). Control EC were also unable to stimulate allogeneic T4 cell DNA synthesis unless large numbers of stimulator cells were used. Small numbers of IFN-gamma-treated EC were able to stimulate allogeneic T4 cell DNA synthesis, whereas larger numbers were markedly more effective than control EC. In contrast, IFN-gamma-treated FB were ineffective stimulators of allogeneic T4 cell DNA synthesis. IFN-gamma-treated FB were able to present the exogenous antigen SKSD to autologous but not allogeneic T4 cells, but they were extremely inefficient APC. The inability of IFN-gamma-treated FB to function as APC could not be explained by FB-mediated immunosuppression, Ia density, or HLA-DQ expression. This limited capacity of IFN-gamma-treated FB to participate in Ia-restricted functional interactions with T4 cells correlated with a similar diminished capacity to support nonspecific mitogen-induced proliferation of T4 cells before IFN-gamma-induced Ia expression. This accessory cell function was not enhanced by IFN-gamma treatment. Monocytes syngeneic to the responding T4 cells but not interleukin 1 (IL 1) permitted IFN-gamma-treated FB but not control FB to stimulate allogeneic T4 cell DNA synthesis, but they remained markedly less effective stimulators than monocytes. Moreover, IFN-gamma-treated FB were effective stimulators of alloprimed T4 cells, in contrast to their inability to stimulate fresh T4 cells. Furthermore, monocytes and IFN-gamma-treated FB were comparably effective stimulators of alloreactive T cell lines. These data suggest that accessory cells perform functions unrelated to Ia and IL 1 that are necessary for mitogen-, alloantigen-, and antigen-induced proliferation of freshly isolated T cells. Monocytes and EC effectively perform this function, but FB do not. This accessory cell function does not seem to be as important for the activation of primed T cells.  相似文献   

4.
Guinea pig liver sinusoidal lining cells (LSLC), a mixture of Kupffer cells (KC) and sinusoidal endothelial cells (EC), were examined for their capacity to function as antigen-presenting cells (APC). LSLC were extremely poor stimulators of freshly isolated allogeneic T lymphocytes even though a large number of them expressed class II major histocompatibility complex (MHC) antigens (Ia). This deficiency could not be explained by a lack of soluble factor production by LSLC, because an interleukin 1-containing macrophage (M phi) supernatant could not restore the capacity of LSLC to stimulate allogeneic T cells. Moreover, LSLC were able to promote mitogen-induced proliferation of accessory cell-depleted T lymphocytes. No evidence of suppression was apparent in experiments in which LSLC were added to cultures of T cells stimulated by allogeneic peritoneal exudate M phi (PEM). The Ia expressed by LSLC was functional because they were able to stimulate an alloreactive T cell line. When LSLC were mixed and co-cultured with either PEM syngeneic to the responding lymphocytes or Ia-negative fibroblasts, the allostimulatory ability of LSLC was greatly augmented. In contrast, the addition of mitogen-activated T cell supernatants had only a minimal effect on the capacity of LSLC to stimulate allogeneic T cells. The data suggest that LSLC lack a biologic property that is necessary for recognition of class II MHC determinants by fresh but not primed allogeneic T cells and that is not required to support T cell activation induced by nonspecific mitogenic lectins. These findings may be important in understanding the reason that antigen introduced into the portal blood appears not to initiate an immune response.  相似文献   

5.
Epithelioid cells from BCG-induced granulomas and macrophages from Mycobacterium leprae-induced granulomas were examined for their ability to act as accessory cells for T-cell proliferation to mitogen (Con A) and antigen (PPD). The granuloma cells were separated on a FACS using monoclonal antibody specific to guinea pig macrophages. Epithelioid cells (which are Ia negative) were able to support proliferation to Con A but not to antigen. Cultures containing Ia positive granuloma macrophages from M. leprae sensitized animals did not show responsiveness to Con A or to PPD. Oil-induced peritoneal exudate macrophages from BCG or M. leprae immunized animals were able to act as accessory cells for both mitogen and antigen proliferation. The nonresponsiveness of cultures containing epithelioid cells stimulated with PPD or M. leprae granuloma macrophages stimulated with Con A was not due to suboptimal or supraoptimal accessory cell:lymphocyte ratios.  相似文献   

6.
The accessory cell requirements for the induction of proliferative and specific antibody responses of human lymphocytes stimulated with either antigen or mitogen were examined. An Ia-negative human myeloid tumor cell line, K562, could substitute for monocytes in the proliferation of monocyte-depleted lymphocytes in response to pokeweed mitogen (PWM) stimulation. K562 cells could also act as accessory cells in the PWM-induced anti-keyhole limpet hemocyanin (KLH) antibody synthesis of cells from a KLH-immunized donor. In contrast, only monocytes and not K562 cells could function as accessory cells in antigen-induced lymphocyte proliferation as well as in antigen-induced, antigen-specific antibody production. However, K562 cells, like monocytes, were able to positively and negatively regulate polyclonal immunoglobulin responses. Thus, Ia-bearing accessory cells can function in antigen-induced proliferation and antibody responses while non-Ia-bearing cells can function in mitogen-induced, but not anti-geninduced responses. These studies indicate a dichotomy in the nature of required accessory cells in antigen-induced versus mitogen-induced human lymphocyte responses and strongly suggest an obligatory role of Ia or an Ia-related molecule on accessory cells in antigen-induced responses of human lymphocytes.  相似文献   

7.
Human T cells, when activated by antigen or mitogen, express Ia antigens. We have examined the capacity of activated T cells to stimulate autologous and allogeneic T cells and their ability to present soluble antigen. Interleukin 2-dependent T-cell lines (TCL), free of accessory cells, were used for antigen-presenting cells. These activated T cells were potent stimulators in an autologous mixed lymphocyte reaction (AMLR), more so than autologous irradiated non-T mononuclear cells. Activated T cells were also able to stimulate proliferation of allogeneic T cells in the absence of any other accessory cells, and this stimulation was blocked by anti-Ia antibodies. Resting unstimulated T cells were unable to stimulate autologous or allogeneic responses. Thus, activated T cells were able to present self antigens and alloantigens. However, activated T cells could not present soluble antigens to autologous T cells or to antigen-specific TCL even if exogenous interleukin 1 was added to cultures. The ability of activated T cells to stimulate an AMLR in vitro may reflect an important immunologic amplification mechanism in vivo. The ability of activated T cells to present alloantigens but not soluble antigens suggests an inability to process antigen, and this may provide further insights into the complexities of antigen presentation.  相似文献   

8.
In bone marrow cell (BMC) cultures supplemented with colony-stimulating factor (CSF), accessory cells develop that are capable of inducing specific helper T cells. These accessory cells become effective after 4 days in culture and can be found not only in the adherent but also in the nonadherent cell population. On the other hand, very few accessory cells with helper cell-inducing capacity are obtained in BMC cultures without CSF. The active BMC-derived cell type has been shown to carry Ia surface antigen, since pretreatment with anti-Ia serum and complement abolished the capacity of these cells to function like macrophages in helper T cell induction. Moreover, the appearance of functional accessory cells in these cultures coincided with the presence of Ia-bearing cells.  相似文献   

9.
The identities of murine accessory cells and the mechanism by which they process antigen and stimulate T cell proliferation have been examined with cell separation techniques and specific agents to block antigen catabolism. Using preparations of splenic dendritic cells (DC) and macrophages (M phi) with minimal cross-contamination, we found that only DC could induce syngeneic mixed leukocyte reaction (MLR), whereas both DC and M phi could initiate allogeneic MLR. This observation may have significant implications for syngeneic MLR as a manifestation of self Ia recognition, and for the cell type that defines self Ia during ontogeny. DC and M phi could present soluble antigens such as purified protein derivative of tuberculin (PPD) and Salmonella flagellin about equally well to antigen-specific T cell lines. M phi, however, were much more effective than the non-phagocytic DC at inducing T cell proliferation to whole Corynebacterium parvum organisms. These differences could not be attributed to differences in antigen uptake. The results suggest that the bacteria must be ingested and processed by phagocytes before T cell activation. Using the lysosomotropic agent chloroquine to inhibit antigen catabolism in accessory cells, we found that the presentation of large antigens by M phi and DC was abolished by chloroquine treatment, whereas T cell activation by antigens (such as PPD or integral membrane Ia for MLR) that apparently required no processing was relatively insensitive to chloroquine. Thus, in addition to differences between cells, discrete functions within each cell type can also be distinguished.  相似文献   

10.
The supernatant from Mycoplasma arthritidis broth cultures (MAS) contains a T cell mitogen that is under Ir gene control. Responsiveness to this mitogen is dictated by the I-E/I-C subregion of the major histocompatibility complex and is dependent upon adherent radioresistant Ia+ accessory cells from responding haplotype animals. In this study, we established that MAS could be removed from culture supernatants by absorption with spleen cells from mice that themselves are responsive to the mitogen (k and d haplotypes), but activity is not removed by spleen cells from mouse strains that are nonresponsive to the mitogen (b, q, and s haplotypes). Absorption studies with lymphoid cells from congenic and recombinant strain mice established that absorption of the mitogen was itself linked to the I-E/I-C subregion of the major histocompatibility complex. Thymocytes from responding haplotype strains were incapable of removing MAS activity, and spleen cells devoid of Thy-1-positive cells retained their full absorbing capacity. The ability to effectively absorb MAS activity was abrogated by the pretreatment of spleen cells with anti-Ia antiserum and complement. Furthermore, the ability of spleen cells from responding haplotype strains to respond to MAS was blocked by the addition of anti-Ia serum to the cell cultures. Whereas the latter treatment resulted in an almost complete elimination of MAS responsiveness, the ability of similarly treated spleen cells to respond to the mitogens PHA and Con A was only minimally depressed. These results are consistent with our hypothesis that the mitogenic moiety of MAS actually binds to I-E/I-C-coded Ia antigens.  相似文献   

11.
The capacity of interferon-gamma (IFN-gamma)-treated HLA-DR expressing human dermal fibroblasts (FB) to function as antigen-presenting cells (APC) was examined. FB were cultured with 250 U/ml IFN-gamma for 4 days to induce HLA-DR expression. Peripheral blood monocytes (M phi), FB, or IFN-gamma-treated FB from the same donor were then cultured overnight with or without the recall antigen streptokinase streptodornase (SKSD), and their capacity to stimulate autologous T4 cell DNA synthesis was examined. SKSD-bearing M phi stimulated T4 cell proliferation, whereas antigen-bearing HLA-DR (+) FB did not. Even after fixation with paraformaldehyde to eliminate metabolic activity, SKSD-bearing M phi, but not FB, were able to function as APC. However, when HLA-DR (-) endothelial cell (EC) or autologous or HLA-D-mismatched M phi were added to the cultures, antigen-pulsed IFN-gamma-treated FB and M phi were comparably effective stimulators of autologous T4 cell DNA synthesis. Antigen recognition by the T4 cell was restricted by the class II major histocompatibility complex (MHC)-encoded gene products expressed by the IFN-gamma-treated FB and was unrelated to the class I or II MHC-encoded gene products expressed by the additional cell type. EC-promoted T4 cell DNA synthesis induced by antigen-bearing IFN-gamma-treated FB was inhibited by 60.3, a monoclonal antibody directed at an epitope common to LFA-1, CR3, and the p150,95 molecule. Inhibition caused by 60.3 was completely reversed by the addition of IL 2 to the cultures. Antigen presentation by IFN-gamma-treated FB was also enhanced somewhat by IL 1, IL 2, or monoclonal antibody directed at Tp44 (9.3). However, each of these additions alone promoted T cell proliferation less effectively than EC and resulted in responses that were smaller than those triggered by antigen-bearing M phi. The data suggest that IFN-gamma-treated FB take up and process antigen effectively, but lack an accessory cell property necessary for antigen-induced T4 cell IL 2 production and proliferation.  相似文献   

12.
We have examined the effect of negative selection with anti-Ia serum and C on a number of T cell functions and have clearly defined two subpopulations of guinea pig T lymphocytes. One subpopulation is susceptible to the lytic effects on anti-Ia serum and C and includes the majority of the primed T cells which proliferate and which produce migration inhibition factor in response to specific antigen stimulation in vitro. The lytic effects of anti-Ia serum were directed against the antigen-specific T cell and not an accessory cell such as a macrophage or nonantigen-specific T cell. No evidence for allelic exclusion of the Ia antigens of the antigen-responsive cell could be demonstrated. The susceptibility of the mitogen-responsive T cell to lysis by anti-Ia serum and C varied with the mitogen used, anatomic origin of the T cell, and the strain of animals studied. A second subpopulation of T cells is completely resistant to the lytic effects of anti-Ia serum and C and includes the primed T helper cell and the T cell that proliferates in response to alloantigenic stimulation in the MLR.  相似文献   

13.
The effects of granulocyte-macrophage (GM)-CSF on the synthesis of MHC class II molecules and on the Ag presentation capacity by bone marrow derived macrophages (BMM phi) was investigated. BMM phi obtained by in vitro culture in the presence of macrophage-CSF were negative for synthesis of I-A molecules and induced the Ag-mediated proliferation of insulin-specific T clone cells with lower efficiency than splenic accessory cells. After pulse treatment with GM-CSF for 24 to 48 h, day 12 BMM phi exhibited highly efficient Ag presentation function which was superior to that induced by IFN-gamma. Expression of membrane-bound IL-1 was augmented significantly by GM-CSF, but not by IFN-gamma. However, the T cell clone used to probe for accessory cell function of BMM phi was not dependent on IL-1 for optimal proliferation. Concomitantly, GM-CSF induced the de novo synthesis of I-A molecules, although to a lesser extent than optimal doses of IFN-gamma. Thus GM-CSF appears to elicit properties in addition to Ia molecule synthesis and membrane IL-1 expression in BMM phi being essential for efficient accessory cell function to the T clone cells. The activation of BMM phi by GM-CSF was reversible and could be repeated. These data show that GM-CSF exerts a modulatory influence on preformed BMM phi, reversibly activating cells to Ia biosynthetic potential and pronounced accessory cell capacity, thus rendering the explanation unlikely that differentiation of precursor cells into a constitutively functional state had occurred.  相似文献   

14.
Using human thymocytes and autologous thymic epithelial (TE) cells grown in vitro in long-term culture, we have found TE cells can function as accessory cells for mitogen-induced mature thymocyte activation. Tritiated thymidine incorporation, blast formation, and protein synthesis were all induced in accessory cell-depleted thymocytes by autologous TE cells in the presence of suboptimal concentrations of PHA. After 3 days of mitogen stimulation of thymocyte-TE cell cocultures in vitro, thymocyte blasts bound to TE cells and 77 +/- 4% (mean +/- SEM) of TE cells acquired expression of major histocompatibility complex (MHC) class II (DR) antigen. TE accessory cell function for thymocyte activation was dependent on the number of TE cells added to thymocyte cultures, was not dependent on TE cell division, but did require TE cell protein synthesis. In thymocyte separation experiments, the predominant cell type responding to PHA in the presence of TE cells was T6- mature (stage III) thymocytes. Thus, human TE cells are capable of providing signals that lead to mature thymocyte activation.  相似文献   

15.
The environmental agents E. coli endotoxin and zymosan A modulated antigen-specific T cell proliferation in vitro, assessed by 3H-TdR uptake. In the continual presence of these agents, human mononuclear leukocyte responses to the antigens tuberculin PPD, Candida albicans, and mumps were significantly reduced. Treatment of adherent cell-depleted T cells with the agents did not affect their subsequent reactivity to soluble antigens in the presence of normal M phi. However, cultures consisting of pretreated M phi, normal T cells, and soluble antigen gave responses that were only 7 to 38% of control values, indicating that the function of the antigen-presenting cell, not the T cell, was inhibited. This effect was observed only when treatment with endotoxin or zymosan A preceded antigen stimulation by at least 24 hr, suggesting that a gradual inhibition of antigen presentation had occurred. When various ratios of normal antigen-pulsed and agent-treated M phi were cultured with normal T cells, antigen-specific responses were not significantly different from control cultures; this indicated that M phi-mediated suppression was not involved. It did not appear that the inhibition was due to enhanced antigen degradation by the treated M phi because responses were not reconstituted in the presence of excess antigen. After endotoxin or zymosan A treatment of the M phi population the proportion of Ia+ cells was reduced significantly, and surface expression of Ia antigen correlated with the ability of the cell population to present antigens to immune T cells. This suggested that endotoxin and zymosan A induce a loss of surface Ia antigen on antigen-presenting cells that inhibits immune T cell activation.  相似文献   

16.
Human mononuclear phagocyte (M phi) populations were compared to adult human endothelial cells (HEC) for their respective abilities to influence the proliferative responses of purified human T lymphocytes to the mitogenic agents Na-m-periodate (IO-4), soybean agglutinin (SBA), or allogeneic cells. HEC and M phi were both capable of inducing proliferative responses of allogeneic T lymphocytes in mixed-lymphocyte culture. Under low cell density culture conditions, purified T-lymphocyte proliferative responses to IO-4 or SBA could be restored by addition of syngeneic M phi or HEC. At higher cell density culture conditions, proliferation of T cells to IO-4 could be amplified more by HEC than M phi. T-lymphocyte proliferative responses to SBA were amplified by addition of HEC but were suppressed by addition of M phi. These findings indicate that human adult HEC are unique and potent accessory cells for T lymphocytes. Furthermore, these findings demonstrate that accessory cell functions of HEC can be discriminated from those of M phi.  相似文献   

17.
We have previously demonstrated that when primed T lymphocytes were repeatedly incubated on monolayers of antigen-pulsed macrophages (M phi), the cells that failed to adhere to the monolayer demonstrated a marked depletion of their proliferative response that was specific both for the antigen used for pulsing the M phi and for Ia determinants on the M phi. In order to further analyze the contribution of the nominal antigen and Ia antigens to the physical binding of T lymphocytes to M phi, we have attempted to block the absorption of T lymphocytes to M phi with a large excess of soluble antigen and with anti-Ia sera. Our results demonstrate that anti-Ia sera inhibit but that soluble antigen augments the binding of specific T lymphocytes to M phi. The implications of these findings for "dual recognition" and "linked recognition" models of T lymphocyte receptors are discussed.  相似文献   

18.
The recent development of a reliable murine T lymphocyte proliferation assay has facilitated the study of T lymphocyte function in vitro. In this paper, the effect of anti-histocompatibility antisera on the proliferative response was investigated. The continuous presence of anti-Ia antisera in the cultures was found to inhibit the responses to the antigens poly (Glu58 Lys38 Tyr4) [GLT], poly (Tyr, Glu) ploy D,L Ala-poly Lys [(T,G)-A--L], poly (Phe, Glu)-poly D,L Ala-poly Lys [(phi, G)-A--L], lactate dehydrogenase H4, staphylococcal nuclease, and the IgA myeloma protein, TEPC 15. The T lymphocyte proliferative responses to all of these antigens have previously been shown to be under the genetic control of major histocompatibility-linked immune response genes. The anti-Ia antisera were also capable of inhibiting proliferative responses to antigens such as PPD, to which all strains respond. In contrast, antisera directed solely against H-2K or H-2D antigens did not give significant inhibition. Anti-Ia antisera capable of reacting with antigens coded for by genetically defined subregions of the I locus were capable of completely inhibiting the proliferative response. In the two cases studied, GLT and (T,G)-A--L, an Ir gene controlling the T lymphocyte proliferative response to the antigen had been previously mapped to the same subregion as that which coded for the Ia antigens recognized by the blocking antisera. Finally, in F1 hybrids between responder and nonresponder strains, the anti-Ia antisera showed haplotype-specific inhibition. That is, anti-Ia antisera directed against the responder haplotype could completely block the antigen response controlled by Ir genes of that haplotype; anti-Ia antisera directed against Ia antigens of the nonresponder haplotype gave only partial or no inhibition. Since this selective inhibition was reciprocal depending on which antigen was used, it suggested that the mechanism of anti-Ia antisera inhibition was not cell killing or a nonspecific turning off of the cell but rather a blockade of antigen stimulation at the cell surface. Furthermore, the selective inhibition demonstrates a phenotypic linkage between Ir gene products and Ia antigens at the cell surface. These results, coupled with the known genetic linkage of Ir genes and the genes coding for Ia antigens, suggest that Ia antigens are determinants on Ir gene products.  相似文献   

19.
Pretreatment of murine lymphoid cells with anti-Ia and C abrogated the proliferative response of these cells to Con A, but not to PHA. Reconstitution experiments demonstrated that T cell-enriched populations failed to restore Con A responsiveness and that T cell-depleted populations were more effective in restoring responsiveness to Con A. In particular, a population of 1000 R resistant, glass-adherent, non-T spleen cells was capable of completely restoring responsiveness to Con A when added in numbers as low as 4% of cultured cells. These splenic adherent cells were found to express Ia determinants encoded by at least two genes: one in I-A and the other in I-B, I-J, and/or I-E/C, and it was demonstrated that determinants encoded in these two regions were expressed on the same cell. These results demonstrate that non-T accessory cells may be the Ia+ cells entirely responsible for the anti-Ia and C-induced abrogation of T cell proliferative responses to Con A.  相似文献   

20.
The role of murine macrophages (M phi) and that of splenic dendritic cells (DC) were investigated in the antigen-specific proliferative response of memory T cells of mice primed with key-hole limpet hemocyanin (KLH) 6 weeks or more before. Peritoneal M phi, whether expressing Ia antigens or not, did not function as autonomous accessory cells (A cells). A-cell activity of the spleen adherent cell population, which comprised M phi in the majority and DC in the minority, was abolished by eliminating DC with a DC-specific monoclonal antibody and complement, and regained by the addition of a small number of DC. Though M phi did not function as autonomous A cells, they augmented the proliferative response in the presence of a small number of DC. This occurred not only in the presence of free antigen, but also when DC and/or M phi were pulsed with antigen. A culture supernatant of M phi having interleukin-1 activity was effective in enhancing the proliferation of T cells which responded to antigen-pulsed DC. On the other hand, interleukin-2 did not replace DC even in the presence of antigen-pulsed Ia+ M phi. We also investigated recently primed T cells, but no evidence was obtained in favor of the competence of M phi as autonomous A cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号