首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenate reduction by bacteria from a selenium-rich environment.   总被引:3,自引:2,他引:1       下载免费PDF全文
Samples collected from Kesterson Reservoir were screened for bacterial presence and selenate reduction capability. Selenate concentrations of 100 mg/liter were not toxic to indigenous bacteria. Of the 44 samples collected, 20 possessed microbial populations capable of reducing selenate. Reduction was observed in 4% of the water samples, 92% of the sediment samples, and 100% of the soil samples. Microbial reduction of 100 mg of selenate per liter was complete within 1 week of incubation. Up to 75 mg of selenate per liter was reduced beyond selenite to an insoluble red precipitate. Data collected indicate that indigenous bacteria have a significant role in the biogeochemical cycling of selenium.  相似文献   

2.
Factors Influencing the Effectiveness of Swimming Pool Bactericides   总被引:6,自引:3,他引:3       下载免费PDF全文
Techniques for culturing, harvesting, and testing bacteria to evaluate bactericidal chemicals for swimming pools are described. Concentrations of 25, 50, and 100 mg of the chlorine stabilizer cyanuric acid per liter increased the time required for a 99% kill of Streptococcus faecalis by 0.5 mg of chlorine per liter at pH 7.4 and 20 C from less than 0.25 min without cyanuric acid to 4, 6, and 12 min, respectively. The effect of concentrations of ammonia nitrogen in the range found in swimming pools on the rate of kill of 0.5 mg of chlorine per liter and of chlorine plus cyanuric acid was tested. At concentrations of ammonia nitrogen greater than 0.05 mg per liter, faster rates of kill of S. faecalis were obtained with 100 mg of cyanuric acid per liter plus 0.5 mg of chlorine per liter than with 0.5 mg of chlorine per liter alone. When water samples from four swimming pools with low ammonia levels were used as test media, 0.5 mg of added chlorine per liter killed 99.9% of the added S. faecalis in less than 2 min, but water from a pool with a large number of children required 60 to 180 min of treatment.  相似文献   

3.
Bacterial nitrification in chloraminated water supplies.   总被引:2,自引:1,他引:1       下载免费PDF全文
Nitrifying bacteria were detected in 64% of samples collected from five chloraminated water supplies in South Australia and in 20.7% of samples that contained more than 5.0 mg of monochloramine per liter. Laboratory experiments confirmed that nitrifying bacteria are relatively resistant to the disinfectant. Increased numbers of the bacteria were associated with accelerated decays of monochloramine within distribution systems. The combination of increased concentrations of oxidized nitrogen with decreased total chlorine residuals can be used as a rapid indicator of bacterial nitrification.  相似文献   

4.
Bacterial nitrification in chloraminated water supplies.   总被引:2,自引:0,他引:2  
Nitrifying bacteria were detected in 64% of samples collected from five chloraminated water supplies in South Australia and in 20.7% of samples that contained more than 5.0 mg of monochloramine per liter. Laboratory experiments confirmed that nitrifying bacteria are relatively resistant to the disinfectant. Increased numbers of the bacteria were associated with accelerated decays of monochloramine within distribution systems. The combination of increased concentrations of oxidized nitrogen with decreased total chlorine residuals can be used as a rapid indicator of bacterial nitrification.  相似文献   

5.
The effect of cadmium stress on protozoan bacterivory in sewage sludge was measured by experimentally exposing sludge communities to 0 to 150 mg of Cd per liter for up to 6 h and then determining the rates of protozoan grazing on bacteria, using a double-staining technique and epifluorescence microscopy. Bacterivory was measured by incubating the sludge with fluorescently labeled bacterium-sized latex beads and directly observing ingestion of the beads and bacterial cells in the sludge by epifluorescence microscopy of preserved samples. Staining with 4',6-diamidino-2-phenylindole and acridine orange permitted the simultaneous determination of protozoan numbers and bacterivory activity as estimated by the number of bacterial cells and bacterium-sized latex beads ingested by the representative ciliate Aspidisca costata. Enumeration with latex beads proved to be an effective way of estimating bacterivory in sludges subjected to heavy-metal stress. This technique should prove useful for determining the effects of other chemical stresses on protozoan numbers and bacterivory in organic-rich environments. Although the number of protozoa declined significantly only after exposure to 100 mg of Cd per liter for 4 h, grazing, as indicated by bead ingestion, was significantly inhibited by Cd concentrations of greater than 25 mg/liter in less than 1 h, and exposure to 100 mg of Cd per liter effectively stopped protozoan grazing within 1 h of exposure. Protozoan ingestion of latex beads and bacteria was inversely correlated to Cd concentration and exposure time. The reduction of protozoan bacterivory by Cd provides a possible explanation for the increase in suspended bacteria in the effluents of metal-stressed treatment facilities.  相似文献   

6.
The effect of cadmium stress on protozoan bacterivory in sewage sludge was measured by experimentally exposing sludge communities to 0 to 150 mg of Cd per liter for up to 6 h and then determining the rates of protozoan grazing on bacteria, using a double-staining technique and epifluorescence microscopy. Bacterivory was measured by incubating the sludge with fluorescently labeled bacterium-sized latex beads and directly observing ingestion of the beads and bacterial cells in the sludge by epifluorescence microscopy of preserved samples. Staining with 4',6-diamidino-2-phenylindole and acridine orange permitted the simultaneous determination of protozoan numbers and bacterivory activity as estimated by the number of bacterial cells and bacterium-sized latex beads ingested by the representative ciliate Aspidisca costata. Enumeration with latex beads proved to be an effective way of estimating bacterivory in sludges subjected to heavy-metal stress. This technique should prove useful for determining the effects of other chemical stresses on protozoan numbers and bacterivory in organic-rich environments. Although the number of protozoa declined significantly only after exposure to 100 mg of Cd per liter for 4 h, grazing, as indicated by bead ingestion, was significantly inhibited by Cd concentrations of greater than 25 mg/liter in less than 1 h, and exposure to 100 mg of Cd per liter effectively stopped protozoan grazing within 1 h of exposure. Protozoan ingestion of latex beads and bacteria was inversely correlated to Cd concentration and exposure time. The reduction of protozoan bacterivory by Cd provides a possible explanation for the increase in suspended bacteria in the effluents of metal-stressed treatment facilities.  相似文献   

7.
Arsenate was produced when anoxic Mono Lake water samples were amended with arsenite and either selenate or nitrate. Arsenite oxidation did not occur in killed control samples or live samples with no added terminal electron acceptor. Potential rates of anaerobic arsenite oxidation with selenate were comparable to those with nitrate ( approximately 12 to 15 mumol.liter(-1) h(-1)). A pure culture capable of selenate-dependent anaerobic arsenite oxidation (strain ML-SRAO) was isolated from Mono Lake water into a defined salts medium with selenate, arsenite, and yeast extract. This strain does not grow chemoautotrophically, but it catalyzes the oxidation of arsenite during growth on an organic carbon source with selenate. No arsenate was produced in pure cultures amended with arsenite and nitrate or oxygen, indicating that the process is selenate dependent. Experiments with washed cells in mineral medium demonstrated that the oxidation of arsenite is tightly coupled to the reduction of selenate. Strain ML-SRAO grows optimally on lactate with selenate or arsenate as the electron acceptor. The amino acid sequences deduced from the respiratory arsenate reductase gene (arrA) from strain ML-SRAO are highly similar (89 to 94%) to those from two previously isolated Mono Lake arsenate reducers. The 16S rRNA gene sequence of strain ML-SRAO places it within the Bacillus RNA group 6 of gram-positive bacteria having low G+C content.  相似文献   

8.
An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence. The study concludes that the occurrence of coliform bacteria within a distribution system is dependent upon a complex interaction of chemical, physical, operational, and engineering parameters. No one factor could account for all of the coliform occurrences, and one must consider all of the parameters described above in devising a solution to the regrowth problem.  相似文献   

9.
We measured potential rates of bacterial dissimilatory reduction of 75SeO42− to 75Se0 in a diversity of sediment types, with salinities ranging from freshwater (salinity = 1 g/liter) to hypersaline (salinity = 320 g/liter and with pH values ranging from 7.1 to 9.8. Significant biological selenate reduction occurred in all samples with salinities from 1 to 250 g/liter but not in samples with a salinity of 320 g/liter. Potential selenate reduction rates (25 nmol of SeO42− per ml of sediment added with isotope) ranged from 0.07 to 22 μmol of SeO42− reduced liter−1 h−1. Activity followed Michaelis-Menten kinetics in relation to SeO42− concentration (Km of selenate = 7.9 to 720 μM). There was no linear correlation between potential rates of SeO42− reduction and salinity, pH, concentrations of total Se, porosity, or organic carbon in the sediments. However, potential selenate reduction was correlated with apparent Km for selenate and with potential rates of denitrification (r = 0.92 and 0.81, respectively). NO3, NO2, MoO42−, and WO42− inhibited selenate reduction activity to different extents in sediments from both Hunter Drain and Massie Slough, Nev. Sulfate partially inhibited activity in sediment from freshwater (salinity = 1 g/liter) Massie Slough samples but not from the saline (salinity = 60 g/liter) Hunter Drain samples. We conclude that dissimilatory selenate reduction in sediments is widespread in nature. In addition, in situ selenate reduction is a first-order reaction, because the ambient concentrations of selenium oxyanions in the sediments were orders of magnitude less than their Kms.  相似文献   

10.
Evidence for a Terpene-Based Food Chain in the Gulf of Alaska   总被引:5,自引:5,他引:0       下载免费PDF全文
A mixture of 14C-terpenes was prepared from conifer seedlings and introduced into fresh seawater samples taken near Seward, Alaska. Initial rates of oxidation by the indigenous bacteria were linear and faster than the rates of toluene oxidation. Turnover times were 4 to 19 days. Autoradiographic measurements with 3H-terpenes indicated that at least 10% of the 0.6 × 109 to 2.7 × 109 bacteria per liter present could catabolize terpenes. The rate of terpene oxidation, 24 μg of terpenes per g of cells per h with 3 μg of terpenes added per liter, was a constant function of bacterial biomass. The specific affinity of the process was estimated to be between 8.1 and 81 liters/g of cells per h, indicating a high state of induction and the probable presence of terpenes. Terpene-oxidizing bacteria were grown on [14C]alanine and added to fresh seawater samples. Transfer of the bacterial radioactivity into larger particles at a rate of 146 pg/liter per h from the 2.3 × 109 organisms added indicated that any terpenes present would participate in the food chain.  相似文献   

11.
The potential for biological nitrification of an industrial waste containing 4,000 mg of ammonia N (NH4+-N) and 10,000 mg of fluoride per liter was investigated. Ammonium sulfate and sodium fluoride were tested in various combinations of 100 to 2,000 mg of NH4+-N per liter and 0 to 5,000 mg of F per liter in suspended-growth stirred-tank reactors containing enriched cultures of nitrifying bacteria from a municipal sewage treatment plant. The stirred-tank reactors were fed once per day at a constant hydraulic retention period and cell retention time of 10 days. Temperature was 23°C, and pH was 7.0 to 7.5. Clarified secondary effluent was used to make up feeds and to provide minor nutrients. Steady-state data, confirmed by mass balances, were obtained after five to six retention periods. In the absence of fluoride, nitrification efficiency was near 100% for up to 500 mg of NH4+-N per liter. The influence of fluoride was studied at a low ammonia concentration (100 mg/liter) and exerted no significant effect on nitrification at concentrations of up to 200 mg/liter. Maximum effect of fluoride was reached at 800 mg of F per liter, and no greater inhibition was observed for up to 5,000 mg of F per liter. At the highest concentrations studied, ion pairing of ammonium and fluoride may exert a significant effect on kinetic coefficients. Kinetic analyses showed maximum specific substrate removal rates (qmax) of NH4+-N to be about 2.3 mg of N per mg of volatile suspended solids per day in the absence of fluoride and 0.85 mg of N per mg of volatile suspended solids per day in the presence of fluoride. The form of inhibition due to the presence of fluoride was shown to be not competitive, conforming to a mixed inhibition model.  相似文献   

12.
The susceptibility of turbot aquareovirus to five chemical agents was examined. Treatment with 5 mg of malachite green per liter or 500 mg of iodine per liter resulted in a 90% reduction in virus titer within 1 h. Complete inactivation within 5 min was obtained with 2% formalin, 42.5% isopropanol, or 15 mg of free available chlorine per liter. Lower concentrations of chlorine were ineffective.  相似文献   

13.
Microbiological analyses of activated sludge reactors after repeated exposure to 100 mg of p-nitrophenol (PNP) per liter resulted in the isolation of three Pseudomonas species able to utilize PNP as a sole source of carbon and energy. Cell suspensions of the three Pseudomonas sp., designated PNP1, PNP2, and PNP3, mineralized 70, 60, and 45% of a 70-mg/liter dose of PNP in 24, 48, and 96 h, respectively. Mass-balance analyses of PNP residues for all three cultures showed that undegraded PNP was less than 1% (less than 50 micrograms); volatile metabolites, less than 1%; cell residues, 8.4 to 14.9%; and water-soluble metabolites, 1.2 to 6.7%. A mixed culture of all three PNP-degrading Pseudomonas sp. was immobilized by adsorption onto diatomaceous earth biocarrier in a 1.75-liter Plexiglas column. The column was aerated and exposed to a synthetic waste stream containing 629 to 2,513 mg of PNP per liter at flow rates of 2 to 15 ml/min. Chemical loading studies showed that the threshold concentration for acute toxicity of PNP to the immobilized bacteria was 2,100 to 2,500 mg/liter. Further studies at PNP concentrations of 1,200 to 1,800 mg/liter showed that greater than 99 and 91 to 99% removal of PNP was achieved by immobilized bacteria at flow rates of 10 and 12 ml/min, respectively. These values represent hydraulic retention times of 48 to 58 min and PNP removal rates of 0.99 to 1.1 mg/h per g of biocarrier at 25 degrees C under optimal conditions. This study shows the successful use of immobilized bacteria technology to remove high concentrations of PNP from aqueous waste streams.  相似文献   

14.
Microbiological analyses of activated sludge reactors after repeated exposure to 100 mg of p-nitrophenol (PNP) per liter resulted in the isolation of three Pseudomonas species able to utilize PNP as a sole source of carbon and energy. Cell suspensions of the three Pseudomonas sp., designated PNP1, PNP2, and PNP3, mineralized 70, 60, and 45% of a 70-mg/liter dose of PNP in 24, 48, and 96 h, respectively. Mass-balance analyses of PNP residues for all three cultures showed that undegraded PNP was less than 1% (less than 50 micrograms); volatile metabolites, less than 1%; cell residues, 8.4 to 14.9%; and water-soluble metabolites, 1.2 to 6.7%. A mixed culture of all three PNP-degrading Pseudomonas sp. was immobilized by adsorption onto diatomaceous earth biocarrier in a 1.75-liter Plexiglas column. The column was aerated and exposed to a synthetic waste stream containing 629 to 2,513 mg of PNP per liter at flow rates of 2 to 15 ml/min. Chemical loading studies showed that the threshold concentration for acute toxicity of PNP to the immobilized bacteria was 2,100 to 2,500 mg/liter. Further studies at PNP concentrations of 1,200 to 1,800 mg/liter showed that greater than 99 and 91 to 99% removal of PNP was achieved by immobilized bacteria at flow rates of 10 and 12 ml/min, respectively. These values represent hydraulic retention times of 48 to 58 min and PNP removal rates of 0.99 to 1.1 mg/h per g of biocarrier at 25 degrees C under optimal conditions. This study shows the successful use of immobilized bacteria technology to remove high concentrations of PNP from aqueous waste streams.  相似文献   

15.
A method using micro-fiber glass filters (8-micrometers porosity) at pH 3.5 was successfully used for simultaneous concentration of Salmonella and enterovirus from Meurthe River samples, collected 8 km south of Nancy, France. A concentration of 10-liter samples was indispensable and permitted recovery of several enterovirus and Salmonella serotypes in concentrations of 1.3 most probable number of cytopathogenic units per liter and 18 bacteria per liter, respectively.  相似文献   

16.
A method using micro-fiber glass filters (8-micrometers porosity) at pH 3.5 was successfully used for simultaneous concentration of Salmonella and enterovirus from Meurthe River samples, collected 8 km south of Nancy, France. A concentration of 10-liter samples was indispensable and permitted recovery of several enterovirus and Salmonella serotypes in concentrations of 1.3 most probable number of cytopathogenic units per liter and 18 bacteria per liter, respectively.  相似文献   

17.
The objective of this study was to evaluate the effect of human gut-derived lactic acid bacteria and bifidobacteria on cholesterol levels in vitro. Continuous cultures inoculated with fecal material from healthy human volunteers with media supplemented with cholesterol and bile acids were used to enrich for potential cholesterol assimilators among the indigenous bacterial populations. Seven potential probiotics were found: Lactobacillus fermentum strains F53 and KC5b, Bifidobacterium infantis ATCC 15697, Streptococcus bovis ATCC 43143, Enterococcus durans DSM 20633, Enterococcus gallinarum, and Enterococcus faecalis. A comparative evaluation regarding the in vitro cholesterol reduction abilities of these strains along with commercial probiotics was undertaken. The degree of acid and bile tolerance of strains was also evaluated. The human isolate L. fermentum KC5b was able to maintain viability for 2 h at pH 2 and to grow in a medium with 4,000 mg of bile acids per liter. This strain was also able to remove a maximum of 14.8 mg of cholesterol per g (dry weight) of cells from the culture medium and therefore was regarded as a candidate probiotic.  相似文献   

18.
Intensive prawn aquaculture in tropical regions is associated with high concentrations of total ammoniacal nitrogen (TAN) as a result of high rates of prawn excretion and feed loading. Excessive TAN can adversely effect productivity and result in adverse impacts on coastal waters. Cultures of indigenous nitrifying bacteria were enriched from intensive prawn aquaculture pond water using continuous and batch enrichment techniques. Cultures were capable of TAN removal over a wide range of initial TAN concentrations - up to 200 mg/l. Cultures were immobilized onto porous clay pellets to enhance cell density and applied to culture medium and TAN-augmented pond water under aerobic conditions to determine TAN removal proficiency. Immobilized cultures were able to achieve a high TAN removal proficiency in pond water--even at a low density of 0.1 pellet per liter. A concentration of less than 0.5 mg TAN/l could be maintained under a fed-batch condition of 3.2 mg TAN/l per day, after an initial 2-day lag phase. A simplified and effective culture enrichment process was developed for culture immobilization onto pellets using TAN-augmented pond water. Overall, pellet immobilization of indigenous nitrifying bacteria represents a potentially effective TAN control system for prawn aquaculture in low-cost, but intensive tropical prawn farms.  相似文献   

19.
Two marine bacteria, an Acinetobacter sp. (strain GO1) and a vibrio sp. (strain G1), were isolated by extinction dilution and maintained in natural seawater supplemented with nitrogen, phosphorus, and glucose at 0.01 and 10 mg of glucose carbon per liter above ambient monosaccharide concentrations, respectively. After 3 days in unsupplemented natural seawater, growth in batch culture with glucose supplements was determined by changes in cell numbers and glucose concentration. The exponential growth of the Acinetobacter strain with added glucose was indistinguishable from that in natural seawater alone, whereas that of the Vibrio strain was more rapid in the presence of glucose supplements, suggesting that the Acinetobacter strain preferred the natural organic matter in seawater as a carbon source. The ultrastructure for both isolates was unaffected by glucose supplements during exponential growth, but there were marked changes in stationary-phase cells. The Vibrio strain formed polyphosphate at 10 mg of glucose carbon per liter, whereas poly-beta-hydroxybutyrate formation occurred at 100 mg and became excessive at 1,000 mg, disrupting the cells. In contrast, the Acinetobacter strain elongated at 100 and 1,000 mg of glucose carbon per liter but failed to show poly-beta-hydroxybutyrate formation. The diversity of responses shown here would not have been detected with a single concentration of substrate, often used in the literature to characterize both pure and natural populations of marine bacteria.  相似文献   

20.
Two marine bacteria, an Acinetobacter sp. (strain GO1) and a vibrio sp. (strain G1), were isolated by extinction dilution and maintained in natural seawater supplemented with nitrogen, phosphorus, and glucose at 0.01 and 10 mg of glucose carbon per liter above ambient monosaccharide concentrations, respectively. After 3 days in unsupplemented natural seawater, growth in batch culture with glucose supplements was determined by changes in cell numbers and glucose concentration. The exponential growth of the Acinetobacter strain with added glucose was indistinguishable from that in natural seawater alone, whereas that of the Vibrio strain was more rapid in the presence of glucose supplements, suggesting that the Acinetobacter strain preferred the natural organic matter in seawater as a carbon source. The ultrastructure for both isolates was unaffected by glucose supplements during exponential growth, but there were marked changes in stationary-phase cells. The Vibrio strain formed polyphosphate at 10 mg of glucose carbon per liter, whereas poly-beta-hydroxybutyrate formation occurred at 100 mg and became excessive at 1,000 mg, disrupting the cells. In contrast, the Acinetobacter strain elongated at 100 and 1,000 mg of glucose carbon per liter but failed to show poly-beta-hydroxybutyrate formation. The diversity of responses shown here would not have been detected with a single concentration of substrate, often used in the literature to characterize both pure and natural populations of marine bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号