共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate change is predicted to negatively impact wildlife through a variety of mechanisms including retraction of range. We used data from the North American Breeding Bird Survey and regional and global climate indices to examine the effects of climate change on the breeding distribution of the Rusty Blackbird (Euphagus carolinus), a formerly common species that is rapidly declining. We found that the range of the Rusty Blackbird retracted northward by 143 km since the 1960s and that the probability of local extinction was highest at the southern range margin. Furthermore, we found that the mean breeding latitude of the Rusty Blackbird was significant and positively correlated with the Pacific Decadal Oscillation with a lag of six years. Because the annual distribution of the Rusty Blackbird is affected by annual weather patterns produced by the Pacific Decadal Oscillation, our results support the hypothesis that directional climate change over the past 40 years is contributing to the decline of the Rusty Blackbird. Our study is the first to implicate climate change, acting through range retraction, in a major decline of a formerly common bird species. 相似文献
2.
Many studies in recent years have demonstrated long‐term temporal trends in biological parameters that can only be explained by climate change. Bird phenology has received great attention, as it studies one of the most conspicuous, popular, and easily observable phenomena in nature. There are many studies of long‐term changes in spring arrival dates, most of which concur with earlier records from the last few decades. However, few data are available for autumn departures or length of stays. Furthermore, existing data offer an equivocal picture. In this study, we analysed a huge database of about 44 000 records for five trans‐Saharan bird species (Ciconia ciconia, Cuculus canorus, Apus apus, Hirundo rustica and Luscinia megarhynchos). Data were collected from over 1300 sites around Spain during the period 1944–2004. Common spring arrival patterns were found in all species. Spring arrival dates have tended to advance since the mid‐1970s. Current dates are similar to those from the 1940s (except for C. ciconia). Thus, the advance of spring migration over the last three decades could be seen as a return to the initial timing of arrival dates, after abnormally delayed arrivals during the 1970s. A strong negative relationship with temperature in Spain at arrival time was observed in all species. A negative relationship with the Sahel Index (a measurement of precipitation in the African Sahel area during the rainy season) for the previous year was also found in C. canorus, A. apus and H. rustica. Regarding autumn departures, all species showed common interdecadal fluctuations, but only H. rustica is leaving earlier Spain at present. All species departed earlier in years that had higher temperatures during their reproductive period. However, only for H. rustica the relation between Spanish temperatures at departure time and the last sightings of individuals was significant. A heterogeneous temporal response for the length of stay was also found: C. ciconia increased, A. apus did not change and H. rustica decreased its stay. This is the first study, based on an extensive bird phenology observational network covering a large region, that shows the most complete and thorough analysis available for the Mediterranean region. 相似文献
3.
MARCEL E. VISSER ALBERT C. PERDECK JOHAN H. van BALEN CHRISTIAAN BOTH† 《Global Change Biology》2009,15(8):1859-1865
Global climate change has led to warmer winters in NW Europe, shortening the distance between suitable overwintering areas and the breeding areas of many bird species. Here we show that winter recovery distances have decreased over the past seven decades, for birds ringed during the breeding season in the Netherlands between 1932 and 2004. Of the 24 species included in the analysis, we found in 12 a significant decrease of the distance to the wintering site. Species from dry, open areas shortened their distance the most, species from wet, open areas the least, while woodland species fall in between the other two habitats. The decline in migration distance is likely due to climate change, as migration distances are negatively correlated with the Dutch temperatures in the winter of recovery. With a shorter migration distance, species should be better able to predict the onset of spring at their breeding sites and this could explain the stronger advancement of arrival date found in several short distance species relative to long-distance migrants. 相似文献
4.
Climate change and fitness components of a migratory bird breeding in the Mediterranean region 总被引:7,自引:0,他引:7
JUAN JOSÉ SANZ JAIME POTTI† JUAN MORENO SANTIAGO MERINO OSCAR FRÍAs† 《Global Change Biology》2003,9(3):461-472
The increase in spring temperatures in temperate regions over the last two decades has led to an advancing spring phenology, and most resident birds have responded to it by advancing their onset of breeding. The pied flycatcher (Ficedula hypoleuca) is a long‐distance migrant bird with a relatively late onset of breeding with respect to both resident birds and spring phenology in Europe. In the present correlational study, we show that some fitness components of pied flycatchers are suffering from climate change in two of the southernmost European breeding populations. In both montane study areas, temperature during May increased between 1980 and 2000 and an advancement of oak leafing was detected by using the normalized difference vegetation index (NDVI) to assess tree phenology. This might result in an advancement of the peak in availability of caterpillars, the main prey during the nestling stage. Over the past 18 yr, the time of egg laying and clutch size of pied flycatchers were not affected by the increase in spring temperatures in these Mediterranean populations. However, this increase seems to have an adverse effect on the reproductive output of pied flycatchers over the same period. Our data suggest that the mismatch between the timing of peak food supply and nestling demand caused by recent climate change might result in a reduction of parental energy expenditure that is reflected in a reduction of nestling growth and survival of fledged young in our study populations. The data seem to indicate that the breeding season has not shifted and it is the environment that has shifted away from the timing of the pied flycatcher breeding season. Mediterranean pied flycatchers were not able to advance their onset of breeding, probably, because they are constrained by their late arrival date and their restricted high altitude breeding habitat selection near the southern border of their range. 相似文献
5.
Senapathi D Nicoll MA Teplitsky C Jones CG Norris K 《Proceedings. Biological sciences / The Royal Society》2011,278(1722):3184-3190
There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season. 相似文献
6.
Polar Biology - The environmental history since the end of the Little Ice Age of the bird-influenced pond Fugledammen (Hornsund, Svalbard, 77°N) was inferred from a 1-m sediment core using... 相似文献
7.
A report on the 11th European Conference on Computational Biology (ECCB), Basel, Switzerland, September 9-12, 2012. 相似文献
8.
Forest responses to climate change will depend on demographic impacts in the context of competition. Current models used to predict species responses, termed climate envelope models (CEMs), are controversial, because (i) calibration and prediction are based on correlations in space (CIS) between species abundance and climate, rather than responses to climate change over time (COT), and (ii) they omit competition. To determine the relative importance of COT, CIS, and competition for light, we applied a longitudinal analysis of 27 000 individual trees over 6–18 years subjected to experimental and natural variation in risk factors. Sensitivities and climate and resource tracking identify which species are vulnerable to these risk factors and in what ways. Results show that responses to COT differ from those predicted based on CIS. The most important impact is the effect of spring temperature on fecundity, rather than any input variable on growth or survival. Of secondary importance is growing season moisture. Species in the genera Pinus, Ulmus, Magnolia, and Fagus are particularly vulnerable to climate variation. However, the effect of competition on growth and mortality risk exceeds the effects of climate variation in space or time for most species. Because sensitivities to COT and competition are larger than CIS, current models miss the most important effects. By directly comparing sensitivity to climate in time and space, together with competition, the approach identifies which species are sensitive to climate change and why, including the heretofore overlooked impact on fecundity. 相似文献
9.
Climate change threatens not only plant species occurring naturally, but also impacts on regional living plant collections,
which play an important role in ex situ conservation strategies. In the last few years, several global circulation models
have been used to predict different global climate change scenarios. Due to their coarse resolutions, and while more detailed
regional approaches are not available, downscaling techniques have been proposed, as a very simple first approach to increase
detail. We analysed seven sites on mainland Portugal with potential for species conservation (four botanic gardens and three
universities), in the light of downscaled climate change scenarios, using an environmental envelope approach and a predefined
bioclimatic neighbourhood for each site. Thresholds for the bioclimatic neighbourhood were based on Rivas-Martínez’s Bioclimatic
Classification of the Earth. For each site, the expected geographical shift of its original bioclimatic neighbourhood (1950–2000)
was mapped for 2020, 2050 and 2080. Analysing those shifts enabled us to delineate knowledge-transfer paths between sites,
according to the analysed scenarios. We concluded that, according to the Intergovernmental Panel on Climate Change A2 scenario,
all considered sites will be outside the predefined bioclimatic neighbourhood by 2080, while according to the B2 scenario
all of them will be inside that neighbourhood, although sometimes marginally so. Therefore, the implementation of global sustainability
measures as considered in the B2 scenario family can be of great importance in order to delay significantly the impacts of
climate change, giving extra time for the adaptation of the outdoor regional living plant collections. 相似文献
10.
11.
12.
13.
Selva N Cortés-Avizanda A Lemus JA Blanco G Mueller T Heinrich B Donázar JA 《Biology letters》2011,7(4):608-610
Many long-lived avian species adopt life strategies that involve a gregarious way of life at juvenile and sub-adult stages and territoriality during adulthood. However, the potential associated costs of these life styles, such as stress, are poorly understood. We examined the effects of group living, sex and parasite load on the baseline concentration of faecal stress hormone (corticosterone) metabolites in a wild population of common ravens (Corvus corax). Corticosterone concentrations were significantly higher in non-breeding gregarious ravens than in territorial adults. Among territorial birds, males showed higher stress levels than their mates. Parasite burdens did not affect hormone levels. Our results suggest a key role of the social context in the stress profiles of the two population fractions, and that group living may be more energetically demanding than maintaining a territory. These findings have implications for understanding hormonal mechanisms under different life styles and may inspire further research on the link between hormone levels and selective pressures modulating gregarious and territorial strategies in long-lived birds. 相似文献
14.
15.
16.
17.
18.
19.
20.