首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATP substrate site of a second messenger-independent protein kinase of the type NII from porcine liver nuclei was mapped using a series of 30 ATP derivatives with modifications at the base, ribose or triphosphate moiety. Ki values for these derivatives were determined by competition with [gamma-32P]ATP; they range from 4 microM to 1.5 mM. For a comparison with data previously reported for the catalytic subunit of cAMP-dependent protein kinase I from rabbit skeletal muscle, the Ki values were transformed into delta delta values. These values are related to the Ki value of unsubstituted ATP and indicate the decrease of affinity caused by the different substitutions. With both enzymes the major binding affinity is derived from the interaction of the adenine base. The contributions of the two ribosyl OH groups are marginal and the triphosphate moiety interacts most strongly with its beta-phosphoryl group. Between the two enzymes the most striking differences, however, were observed for the specificity of the nucleobase interaction. While an unmodified N-6 amino group is required in the case of the cAMP-dependent protein kinase, the nuclear enzyme seems to tolerate extensive modification at this position, such as the introduction of a keto group or a bulky benzyl residue. Obviously, the ATP site of the nuclear kinase has an open cleft next to the N-6 of the adenine and binding of the adenine occurs by hydrophobic interaction without the formation of hydrogen bonds to any of the adenine nitrogens.  相似文献   

2.
The mechanism by which chemical energy is converted into an electrochemical gradient by P-type ATPase is not completely understood. The effects of ATP analogs on the canine kidney (Na++ K+) ATPase were compared to effects of the same analogs on the maize (Zea mays L. cv. W7551) root H+-ATPase in order to identify probes for the ATP binding site of the maize root enzyme and to determine potential similarities of ATP hydrolysis mechanisms in these two enzymes. Six compounds able to modify the ATP binding site covalently were compared. These compounds could be classed into three distinct groups based on activity. The first group had little or no effect on catalytic activity of either enzyme and included 7-chloro-4-nitrobenz-2-oxa-1.3-diazole. The second group, which included azido adenine analogs. fluorescein isothiocyanate and 5′-p-fluorosulfonylbenzoyladenine, were inhibitors of ATP hydrolysis by both enzymes. However, the sensitivity of the (Na++ K+) ATPase to inhibition was much greater than that exhibited by the maize root enzyme. The third group, which included periodate treated nucleotide derivatives and 2′,3′-o-(4-benzoylbenzoyl)adenosine triphosphate. inhibited both enzymes similarly. This initial screening of these covalent modifiers indicated that 2′,3′-o-(4-benzoylbenzoyl)adenosine triphosphate was the optimal covalent modifier of the ATP binding site of the maize root enzyme. Certain reagents were much more effective against the (Na++ K+) ATPase than the maize root enzyme, possibly indicating differences in the ATP binding and hydrolysis pathway for these two enzymes. Two ATP analogs that are not covalent modifiers were also tested: the trinitrophenyl derivatives of adenine nucleotides were better than 5′-adenylylimidodiphosphate for use as an ATP binding probe.  相似文献   

3.
The adenylyl cyclases (ACs) are a family of enzymes that are key elements of signal transduction by virtue of their ability to convert ATP to cAMP. The catalytic mechanism of this transformation proceeds through initial binding of ATP to the purine binding site (P-site) followed by metal mediated cyclization with loss of pyrophosphate. Previous work in our group identified novel inhibitors which possess an adenine ring joined to a metal-coordinating hydroxamic acid through flexible linkers. Considering the spatial positioning of the metals with respect to the adenine binding site coupled with potentially favorable entropic factors, conformational restriction of the tether through a stereochemistry based SAR employing a rigid cyclic scaffold was explored.  相似文献   

4.
2-N3-SL-ATP [2-azido-2',3'-O-(1-oxyl-2,2,5,5-tetramethyl-3-carbonyl-pyrroline) adenosine triphosphate], a photoaffinity spin-labeled derivative of ATP with a nitroxide moiety attached to the ribose ring and an azido group attached to C2 of the adenine ring, was used to study the nucleotide-binding site stoichiometry of sarcoplasmic reticulum (SR) Ca2+-ATPase. The label was shown to bind at the catalytic site of the enzyme, even though the rate of hydrolysis was poor. A maximal binding ratio of 1 mol/mol of ATPase was found. The ESR spectra showed signals from spin-spin interactions between two radicals corresponding to a distance of about 15 A between labels bound to adjacent sites on the enzyme. This indicates that the minimal functional unit of the Ca2+-ATPase is a dimer with the nucleotide-binding sites in close proximity.  相似文献   

5.
Cys-674 of the sarcoplasmic reticulum Ca2(+)-ATPase was labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine without a loss of the catalytic activity, and changes in the fluorescence intensity upon addition of seven kinds of substrate were followed by the stopped-flow method. The steady-state fluorescence intensity and anisotropy were also determined. When Ca2+ was present, the fluorescence intensity and anisotropy decreased greatly upon addition of any substrate used. The observed affinity for each substrate agreed with the previously observed affinity of the catalytic site. The fluorescence drop induced by the adenine nucleotides, ATP and adenosine 5'-(beta, gamma-methylene)triphosphate (a nonhydrolyzable ATP analog), was much faster than that induced by other substrates. The ATP-induced fluorescence drop preceded phosphoenzyme formation when the ATP concentration was high, but the fluorescence drop coincided with phosphoenzyme formation when it was slowed by reducing ATP concentrations. The fluorescence drop induced by ITP or acetyl phosphate was slow even at high concentrations of the substrate, and it coincided with phosphoenzyme formation. When Ca2+ was absent, the fluorescence intensity and anisotropy decreased only slightly upon addition of any substrate other than the adenine nucleotides. They decreased substantially upon addition of the adenine nucleotides, but the kinetics of this fluorescence drop were quite different from that of the fluorescence drop induced by any substrate in the presence of Ca2+. These results show that the conformational change, which makes the bound label less constrained, is induced by substrate binding to the catalytic site of the Ca2(+)-activated enzyme. This change precedes phosphoenzyme formation in the catalytic cycle and is greatly accelerated by the adenine moiety of the substrate.  相似文献   

6.
The triphosphate ester of tubercidin (tubercidin triphosphate, TuTP) was synthesized. This is an analog of ATP in which a CH group replaces the N-7 of the adenine ring. The rate of TuTP hydrolysis by myosin in the presence of Mg2+ was the same as that of ATP in the 10(-7)-10(-3) M range, whereas the increment in the optical density of myosin ihe 290mmu region caused by TuTP was twice that caused by ATP. TuTP is hydrolyzed by actomyosin faster than ATP, the value of Vmax being about 4 times larger while the Km values were of the same order of magnitude. The rate of superprecipitation induced by TuTP was 50% of that caused by ATP at nucleotide concentrations of 3-60 muM. A similar difference was observed with respect to the rate of tension development by glycerol-extracted rabbit psoas fibers upon addition of these two substances. Substitution of ADP by tubercidin diphosphate (TuDP) in F-actin did not affect the rate of superprecipitation or enzymic activity of actomyosin.  相似文献   

7.
Raman spectra of ATP at various pH values are affected by addition of equimolar solution of divalent metal ions such as Ca2+, Mg2+, Co2+, Cu2+, and Hg2+. The changes in frequency and intensity have been used to construct models describing the nature of metal-adenine and metal-triphosphate interactions under different conditions. The metal ions are found to co-ordinate the triphosphate group in the entire pH range studies (pH to 12). Calcium (II) and magnesium (II) interact strongly with the phosphate moiety at neutral pH, although a weak interaction with the ring occur at low pH values. Around neutrality, several Raman spectral changes are observed to implicate the interaction of cobalt (II) ion with the five-membered ring of the adenine. The changes in Raman frequency are too small to suggest a direct Co(II)-N7 binding. At least six different Cu(II)-ATP species are identified between pH 3 and 12. At pH approximately 7.0 Raman data are explained better by Cu(II) interacting with N7 simultaneously with the amino group of the adenine ring. However, a Cu(II) binding to N3 at pH 10 to 11 is indicated by the enhancement of the 760 and 1360 cm-1 vibrations. At neutral pH, mercury (II) ion shows a direct coordination at N1 while at low pH with N1 blocked by protonation, mercury (II) does not interact with the adenine moiety.  相似文献   

8.
C R Sanders  G C Tian  M D Tsai 《Biochemistry》1989,28(23):9028-9043
Adenylyl (beta,gamma-methylene)diphosphonic acid (AMPPCP) labeled with deuterium at the adenine ring ([8-2H]AMPPCP) and at the beta,gamma-methylene group (AMPPCD2P), as well as adenosine 5'-monophosphate labeled at the adenine ring ([8-2H]AMP), was synthesized and used for deuterium nuclear magnetic resonance (NMR) determination of effective correlation times (tau c) of the free nucleotide and the complexes with adenylate kinase (AK). Extensive and rigorous control experiments and theoretical analysis were performed to justify the validity of the experimental approaches, particularly the fast exchange condition, and the reliability of the tau c values obtained. For the free nucleotide, the results suggest that the phosphonate group of free AMPPCP possesses appreciable local mobility relative to the adenine ring and that complexation with Mg2+ greatly reduced such a local mobility. For the complexes with AK, effective tau c values of 7, 15, 28, 28, and 27 ns were obtained for AMPPCD2P, MgAMPPCD2P, [8-2H]AMPPCP, Mg[8-2H]AMPPCP, and [8-2H]AMP, respectively. These results suggest that the adenine ring of substrates is rigidly bound in all cases, that the phosphonate chain of AMPPCP possesses considerable local mobility, and that Mg2+ reduces such local mobility but does not totally immobilize it. The local dynamics of the analogues bound to AK was correlated with local binding energies for the binding of MgAMPPCP and MgATP to AK estimated from the binding studies by proton NMR and other techniques, in conjunction with the binding theory of Jencks [Jencks, W. P. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4046-4050]. The results suggest that no general correlation exists between the local rigidity of portions of a bound substrate and the corresponding (ground state) local binding energy contributed by these portions. In particular, the adenosine moiety contributes little to the binding energy despite the fact that the adenine ring is rigidly bound; the triphosphate (PPPi) moiety behaves oppositely; Mg2+ immobilizes the triphosphate chain but does not enhance binding. Finally, isomers of the substitution-inert beta,gamma-bidentate Cr(III) complexes of adenosine 5'-triphosphate (CrATP) were used to probe two unresolved catalytic problems implicitly related to the local mobility of the phosphonate chain of AMPPCP in the AK-MgAMPPCP complex. The first problem concerns the result of electron paramagnetic resonance (EPR) studies that (Rp)- but not (Sp)-[beta-17O]ATP caused a line broadening in the Mn(II) EPR spectrum of the AK-MnATP complex [Kalbitzer, H. R., Marquetant, R., Connolly, B. A., & Goody, R. S. (1983) Eur. J. Biochem. 133, 221-227].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Atrial natriuretic peptide (ANP) binds to a transmembrane receptor having intrinsic guanylyl cyclase activity; this receptor has been designated GC-A. Binding of ANP to GC-A stimulates its catalytic activity, resulting in increased production of the second messenger, cyclic GMP. Here we show that GC-A can be expressed in insect cells using a recombinant baculovirus and that the expressed protein retained its abilities to bind ANP and to function as an ANP-activated guanylyl cyclase. In addition, GC-A produced in insect cells was absolutely dependent on the presence of adenine nucleotides for activation by ANP. Millimolar concentrations of ATP were required for optimal activation. The relative potencies of various nucleotides for activation was adenosine 5'-O-(thiotriphosphate) greater than ATP greater than ADP, adenosine 5'-(beta, gamma-imino)triphosphate greater than ADP beta S. AMP had no effect. These studies suggest that binding of an adenine nucleotide, most likely to the protein kinase-like domain of GC-A, is absolutely required for ANP activation. Regulation of guanylyl cyclase activation by adenine nucleotides represents a novel mechanism for the modulation of signal transduction, possibly analogous in some respects to the role of guanine nucleotides and G proteins in the regulation of adenylyl cyclase activity.  相似文献   

10.
Anthrax edema factor (EF) is a key virulence factor secreted by Bacillus anthracis. Here, we report a structure, at 3.0 A resolution, of the catalytic domain of EF (EF3) in complex with calmodulin (CaM) and adenosine 5'-(alpha,beta-methylene)-triphosphate (AMPCPP). Although the binding of the triphosphate of AMPCPP to EF3 can be superimposed on that of previously determined 3'deoxy-ATP (3'dATP) and 2'deoxy 3' anthraniloyl-ATP (2'd3' ANT-ATP) in EF3-CaM, the ribose and the adenine rings of AMPCPP are rotated approximately 105 and 180 degrees, respectively, relative to those of 3'dATP and 2'd3'ANT-ATP. Based on this model, K382 and F586 should play key roles in the recognition of adenine. However, mutations of these residues to alanine either separately or together cause only modest changes in Michaelis-Menten constants and IC50 values of AMPCPP and cAMP. Therefore, this alternate binding mode of the adenosine of AMPCPP binds to EF likely playing only a minor role in ATP binding and in catalysis.  相似文献   

11.
Mdm2, a central negative regulator of the p53 tumor suppressor, possesses a Really Interesting New Gene (RING) domain within its C-terminus. In addition to E3 ubiquitin ligase activity, the Mdm2 RING preferentially binds adenine base nucleotides, and such binding leads to a conformational change in the Mdm2 C-terminus. Here, we present further biochemical analysis of the nucleotide–Mdm2 interaction. We have found that MdmX, an Mdm2 family member with high sequence homology, binds adenine nucleotides with similar affinity and specificity as Mdm2, suggesting that residues involved in nucleotide binding may be conserved between the two proteins and adenosine triphosphate (ATP) binding may have similar functional consequences for both Mdm family members. By generating and testing a series of proteins with deletions and substitution mutations within the Mdm2 RING, we mapped the specific adenine nucleotide binding region of Mdm2 to residues 429–484, encompassing the minimal RING domain. Using a series of ATP derivatives, we demonstrate that phosphate coordination by the Mdm2 P-loop contributes to, but is not primarily responsible for, ATP binding. Additionally, we have identified the 2′ and 3′ hydroxyls of the ribose and the C6 amino group of the adenine base moiety as being essential for binding.  相似文献   

12.
Several important cofactors are adenine nucleotides with a vitamin as the catalytic moiety. Here, we report the discovery of the first adenine nucleotide containing vitamin B1: adenosine thiamine triphosphate (AThTP, 1), or thiaminylated ATP. We discovered AThTP in Escherichia coli and found that it accumulates specifically in response to carbon starvation, thereby acting as a signal rather than a cofactor. We detected smaller amounts in yeast and in plant and animal tissues.  相似文献   

13.
The ATP analog specificities of the homogeneous cGMP-dependent protein kinase and the catalytic subunit of cAMP-dependent protein kinase have been compared by the ability of 27 analogs to compete with ATP in the protein kinase reaction. Although the data suggest general similarities between the ATP sites of the two homologous cyclic-nucleotide-dependent protein kinases, specific differences especially in the adenine binding pocket are indicated. These differences in affinity suggest potentially useful ATP analog inhibitors of each kinase. For example, apparent autophosphorylation of the purified regulatory subunit of the cAMP-dependent protein kinase is blocked by nebularin triphosphate, suggesting that the phosphorylation is catalyzed by trace contamination of cGMP-dependent protein kinase. Some of the ATP analogs have also been tested using phosphorylase b kinase in order to compare this enzyme with the cyclic-nucleotide-dependent enzymes. All three protein kinases have high specificity for the purine moiety of ATP, and lower specificity for the ribose or triphosphate. The similarity between the ATP site of phosphorylase b kinase to that of the cyclic-nucleotide-dependent protein kinases suggests that it is related to them. The ATP analog specificities of enzymes examined in this study are different from those reported for several unrelated ATP-utilizing enzymes.  相似文献   

14.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The (Na+ + K+)-activated ATPase catalyzes the K+-activated hydrolysis of 3-O-methylfluorescein phosphate (3OMFP) with a Km of 50 microM, nearly two orders of magnitude lower than the Km for nitrophenyl phosphate, 3 mM. Both ATP and nitrophenyl phosphate are competitors toward 3OMFP with Ki values corresponding to their Km values (for ATP that at the low-affinity sites of the E2 conformation). Enzyme treated with fluorescein isothiocyanate (FITC) such that 60% of the (Na+ + K+)-ATPase activity is lost still hydrolyzes both 3OMFP and nitrophenyl phosphate: the apparent Km values are increased less than 2-fold and the Vmax is unaffected. ATP still inhibits these K+-phosphatase reactions of the FITC-treated enzyme, and this inhibition can exceed the 40% of residual (Na+ + K+)-ATPase activity. Evaluation of a kinetic model indicates that the Ki for ATP is increased about an order of magnitude by FITC-binding. Similar results obtain with trinitrophenyl-ATP (TNP-ATP) as inhibitor, in this case with Ki values in the micromolar range. Finally, FITC treatment increases K+-activated ADPase activity. These observations are interpreted as the fluorescein ring of 3OMFP binding to the adenine pocket of the substrate site, thereby conferring high affinity, just as the fluorescein ring of FITC binding to the adenine pocket in the E1 conformation permits specific linkage of the isothiocyanate chain to a particular lysine, Lys-501. Then, coincident with the transition to the E2 conformation, which bears the low-affinity site for ATP and which catalyzes the K+-phosphatase reaction, the FITC molecule tethered to Lys-501 is pulled from the adenine pocket: allowing 3OMFP and ADP to bind as substrates and ATP and TNP-ATP as inhibitors, albeit in altered conformation. The E1 to E2 transition thus involves not only a change from high to low affinity for ATP, but also a distortion of the adenine pocket and the orientation between Lys-501 and Asp-369, the residue associated with catalysis.  相似文献   

16.
The predominance of the adenosine triphosphate/adenosine diphosphate (ATP/ADP) couple in cellular phosphorylation reactions, including those that form the basis for cellular energy metabolism, cannot be explained on thermodynamic grounds since a variety of "high energy phosphate" compounds (including ADP itself) found in the cell would, based on thermodynamic considerations, be at least as effective as ATP in serving as a phosphoryl donor. How then did present-day organisms come to rely on the ATP/ADP couple as the principal mediator of phosphorylation reactions? The early appearance of adenine compounds in the prebiotic environment is suggested by experiments indicating that, relative to other purine or pyridimine compounds, adenine derivatives are preferentially synthesized under simulated prebiotic conditions (Ponnamperuma et al., 1963). In addition to the roles of adenine nucleotides in phosphorylation reactions, other adenine derivatives (e.g. Coenzyme A, flavin adenine dinucleotide, puridine nucleotides) are employed in a variety of metabolic roles. The principal function of the adenine moiety in these latter cases is in the binding of these derivatives to the relevant enzyme. The capability for binding of the adenine moiety appears to have arisen early in evolution and been exploited in a multitude of contexts, a suggestion consistent with observed similarities between the binding sites of several enzymes employing adenine derivatives as substrate. The early availability of suitable adenine compounds in the biosphere and development of complementary binding sites on cellular proteins, coupled with the expected advantages in having a limited number of metabolites as central mediators of endergonic and exergonic metabolism could readily have led to the observed pre-eminence of adenine nucleotides in cellular energy metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Molecular modeling studies have previously suggested the possible presence of four aromatic residues (Phe(452), Tyr(532), Tyr(535), and Phe(538)) near the adenine binding pocket of the catalytic site on the yeast V-ATPase A subunit (MacLeod, K. J., Vasilyeva, E., Baleja, J. D., and Forgac, M. (1998) J. Biol. Chem. 273, 150-156). To test the proximity of these aromatic residues to the adenine ring, the yeast V-ATPase containing wild-type and mutant forms of the A subunit was reacted with 2-azido-[(32)P]ADP, a photoaffinity analog that stably modifies tyrosine but not phenylalanine residues. Mutant forms of the A subunit were constructed in which the two endogenous tyrosine residues were replaced with phenylalanine and in which a single tyrosine was introduced at each of the four positions. Strong ATP-protectable labeling of the A subunit was observed for the wild-type and the mutant containing tyrosine at 532, significant ATP-protectable labeling was observed for the mutants containing tyrosine at positions 452 and 538, and only very weak labeling was observed for the mutants containing tyrosine at 535 or in which all four residues were phenylalanine. These results suggest that Tyr(532) and possibly Phe(452) and Tyr(538) are in close proximity to the adenine ring of ATP bound to the A subunit. In addition, the effects of mutations at Phe(452), Tyr(532), Tyr(535), and Glu(286) on dissociation of the peripheral V(1) and integral V(0) domains both in vivo and in vitro were examined. The results suggest that in vivo dissociation requires catalytic activity while in vitro dissociation requires nucleotide binding to the catalytic site.  相似文献   

18.
Ulrich SM  Kenski DM  Shokat KM 《Biochemistry》2003,42(26):7915-7921
A single alanine or glycine mutation in the ATP binding site of a protein kinase allows unique use of an unnatural analogue of ATP (N(6)-(benzyl) ATP) as a phosphodonor, which is not accepted by wild-type kinases. Addition of [gamma(32)P] N(6)-(benzyl) ATP to a cell lysate containing an ATP analog-specific kinase allele (as1 allele) results in the exclusive radiolabeling of bona fide substrates of the mutant kinase. Here we report efforts to engineer kinase alleles that have enhanced selectivity for ATP analogues and decreased catalytic activity with ATP, thus increasing the signal-to-noise ratio of substrate labeling. Two conserved leucine residues that contact each face of the adenine ring of ATP were mutated to methionine. The introduction of this "methionine clamp" resulted in Src and Fyn kinase alleles that have markedly improved specificity for unnatural N(6)-substituted ATP analogues over the natural substrate, ATP. This preference for unnatural nucleotides is reflected in more efficient labeling of protein substrates in cell extracts using the new analogue-specific v-Src allele. Kinase alleles with enhanced selectivity for unnatural ATP analogues should greatly facilitate the ultimate goal of labeling kinase substrates in intact cells, where concentrations of ATP and other competing nucleotides are high.  相似文献   

19.
A method resulting in ATP-insulin conjugates by covalent binding of ATP modified at C(6) amino group of the adenine residue with insulin was developed. The modified ATP was bound to insulin by means of metha-p-toluene sulfonate-N-cyclohezyl Nf [2-morpholinyl(4)ethyl]-carbodiimide. The ATP analogs and ATP-insulin conjugates possess the coenzyme activity in a reaction of luciferin oxidation by luciferase from the fireflies Luciola mingrelica. the catalytic properties of soluble and immobilize on CNBR-activated. Sepharose enzymes in reactions with native ATR, its modified derivatives and ATP--insulin conjugates were compared. The bioluminescence reaction involving ATP--insulin conjugate is inhibited by antibodies against insulin. This effect can form a basis for insulin detection in solution, which is based on competitive binding of free and antibody-labelled ATP--insulin conjugates.  相似文献   

20.
Endrizzi JA  Kim H  Anderson PM  Baldwin EP 《Biochemistry》2005,44(41):13491-13499
Cytidine triphosphate synthetases (CTPSs) synthesize CTP and regulate its intracellular concentration through direct interactions with the four ribonucleotide triphosphates. In particular, CTP product is a feedback inhibitor that competes with UTP substrate. Selected CTPS mutations that impart resistance to pyrimidine antimetabolite inhibitors also relieve CTP inhibition and cause a dramatic increase in intracellular CTP concentration, indicating that the drugs act by binding to the CTP inhibitory site. Resistance mutations map to a pocket that, although adjacent, does not coincide with the expected UTP binding site in apo Escherichia coli CTPS [EcCTPS; Endrizzi, J. A., et al. (2004) Biochemistry 43, 6447-6463], suggesting allosteric rather than competitive inhibition. Here, bound CTP and ADP were visualized in catalytically active EcCTPS crystals soaked in either ATP and UTP substrates or ADP and CTP products. The CTP cytosine ring resides in the pocket predicted by the resistance mutations, while the triphosphate moiety overlaps the putative UTP triphosphate binding site, explaining how CTP competes with UTP while CTP resistance mutations are acquired without loss of catalytic efficiency. Extensive complementarity and interaction networks at the interfacial binding sites provide the high specificity for pyrimidine triphosphates and mediate nucleotide-dependent tetramer formation. Overall, these results depict a novel product inhibition strategy in which shared substrate and product moieties bind to a single subsite while specificity is conferred by separate subsites. This arrangement allows for independent adaptation of UTP and CTP binding affinities while efficiently utilizing the enzyme surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号