首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The accumulation of inducible nitric oxide synthase was caused by heat shock of human glioblastoma T98G cells but not of A-172 cells. The accumulation of hsp72 and p53 was observed in A-172 cells cocultivated with heat-shocked T98G cells, which was suppressed by the addition of aminoguanidine to the medium. The accumulation of these proteins was observed in A-172 cells after exposure to the conditioned medium of heat-shocked T98G cells, which was completely blocked by the addition of 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide to the medium. In addition, the accumulation of these proteins in A-172 cells was induced by the administration of S-nitroso-N-acetylpenicillamine to the medium. Finally, the thermosensitivity of A-172 cells was reduced in the conditioned medium of heat-shocked T98G cells compared with conventional fresh growth medium. Our findings demonstrate that the accumulation of stress-induced proteins and thermoresistance in NO recipient cells cocultivated with heat-shocked NO donor cells is induced through an intercellular signal transduction pathway initiated by NO without cell-to-cell interactions such as gap junctions.  相似文献   

2.
There has been a recent upsurge of interest in radiation-induced bystander effects. Previously we reported that the accumulation of inducible nitric oxide (NO) synthase (iNOS) was induced only in human glioblastoma mutant (m) p53 cells by acute irradiation with X-rays, suggesting a suppression of iNOS induction after acute irradiation with X-rays in wtp53 cells. NO secreted from the irradiated mp53 cells induced the accumulation of p53 in unirradiated wtp53 cells. The radiosensitivity of wtp53 cells was reduced by exposure to the conditioned medium from irradiated mp53 cells, suggesting that NO is an initiator of radiation-induced bystander effects. In the present study, we found that the accumulation of iNOS in wtp53 cells was induced by chronic irradiation with gamma-rays followed by acute irradiation with X-rays, but not by each one. It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation. We found that chronic irradiation with gamma-rays did not inhibit the accumulation of p53 after exposure to the conditioned medium from the irradiated mp53 cells. However, the decay of accumulated p53 was stimulated by chronic irradiation with gamma-rays. At the same time, the accumulation of Hdm2 was observed; suggesting that chronic irradiation with gamma-rays may stimulate the degradation of p53 accumulated by NO-mediated bystander effects.  相似文献   

3.
We have previously reported that heat stress induces expression of wild-type TP53 (formerly known as p53) activated factor 1 (CDKN1A, formerly known as WAF1) only when TP53 protein is wild-type using cells of a human glioblastoma cell line (A-172) and cells of its transformant (A-172/mp53/ 143) with a mutant TP53 (point mutation at codon 143 from Val to Ala) vector. Transfection of A-172 cells with the mutant TP53 vector abolished the heat-induced expression of CDKN1A, demonstrating the dominant negative nature of this TP53 mutant over the endogenous wild-type TP53. This kind of dominant negative TP53 mutant occurs frequently in various types of cancer. Overcoming this dominance or restoring the normal functions to these TP53 mutants is a new strategy for TP53-targeted cancer therapies. We examined whether glycerol can act as a chemical chaperone to correct the mutant TP53 conformation. No CDKN1A expression was induced after heating or treatment with glycerol at concentrations of 0.6 and 1.2 M in these transformants. In contrast, A-172/mp53/ 143 cells showed CDKN1A expression when they were heated in the presence of glycerol at 0.6 or 1.2 M, which was similar to the response of the parental and neo vector-transfected control cells. To test the generality of the effects of glycerol on mutant TP53, we used human osteosarcoma Saos-2 cells (lacking TP53) transfected with mutant TP53 and cells of two other human glioblastoma cell lines carrying mutant TP53. These cells showed similar CDKN1A expression when heated in the presence of glycerol at 0.6 or 1.2 M. These results suggest that glycerol is effective in restoring several TP53 mutants to normal TP53 function, leading to normal CDKN1A expression after heat stress. This observation provides a novel tool for correction of mutant TP53 conformation and may be applicable for TP53-targeted cancer therapy.  相似文献   

4.
Recent studies have demonstrated that p21WAF1 (now known as CDKN1A)-dependent and -independent accelerated senescence responses are a major determinant of the sensitivity of cancer cells to chemotherapeutic agents. The objective of the present study was to determine whether human solid tumor-derived cell lines that express wild-type TP53 can exhibit levels of CDKN1A induction after exposure to ionizing radiation that are sufficient to activate the accelerated senescence program. Exposure to 60Co gamma radiation (< or =8 Gy) triggered accelerated senescence in all five TP53 wild-type tumor cell lines examined, albeit to differing degrees. Three of the TP53 wild-type tumor cell lines, HCT116, A172 and SKNSH, activated the TP53 signaling pathway similarly to normal human fibroblasts, as judged by the nuclear accumulation of TP53, magnitude and duration of induction of CDKN1A mRNA and CDKN1A protein, and propensity to undergo accelerated senescence after radiation exposure. In the clonogenic survival assay, the degree of radiosensitivity of these three tumor cell lines was also in the range displayed by normal human fibroblasts. On the other hand, two other TP53 wild-type tumor cell lines, A498 and A375, did not maintain high levels of CDKN1A mRNA and CDKN1A protein at late times postirradiation and exhibited only low levels of accelerated senescence after radiation exposure. Studies with a CDKN1A knockout cell line (HCT116CDKN1A-/-) confirmed that the radiation-triggered accelerated senescence is dependent on CDKN1A function. We conclude that (1) clinically achievable doses of ionizing radiation can trigger CDKN1A-dependent accelerated senescence in some human tumor cell lines that express wild-type TP53; and (2) as previously documented for normal human fibroblasts, some TP53 wild-type tumor cell lines (e.g. HCT116, A172 and SKNSH) may lose their clonogenic potential in response to radiation-inflicted injury primarily through undergoing accelerated senescence.  相似文献   

5.
The influence of radiation-induced apoptosis on radiosensitivity was studied in a set of closely related human lymphoblastoid cell lines differing in TP53 status. The clonogenic survival of irradiated TK6 cells (expressing wild-type TP53), WTK1 cells (overexpressing mutant TP53), and TK6E6 cells (negative for TP53 owing to transfection with HPV16 E6) was assessed in relation to the induction of apoptosis and its suppression by caspase inhibition or treatment with PMA as well as after treatment with caffeine. Measurements using the alkaline comet assay and pulsed-field electrophoresis of the induction and repair of DNA strand breaks showed similar kinetics of the processing of early DNA damage in these cell lines. The cytochalasin B micronucleus assay revealed identical levels of residual damage in the first postirradiation mitosis of these cells. Abrogation of TP53-dependent apoptosis in TK6E6 cells resulted in a distinct increase in radioresistance. Further suppression of apoptosis as observed in WTK1 cells overexpressing mutant TP53 apparently was not responsible for the high radioresistance of WTK1 cells, since other means of highly efficient suppression of apoptosis (caspase inhibition or PMA treatment) increased the clonogenic survival of irradiated TK6 cells only to levels similar to those of TK6E6 cells with abrogated TP53-dependent apoptosis. Considering the similar levels of residual chromosomal damage in TK6E6 cells and WTK1 cells, a hitherto unknown mechanism of tolerance needs to be inferred for these TP53 mutant cells. This residual damage tolerance, however, appears to require an intact G2/M-phase checkpoint function since the relative radioresistance of the WTK1 cells was completely lost upon caffeine treatment, which also resulted in a failure of the TK6 and TK6E6 cells to execute apoptosis. In this situation, the cellular response seems to be dominated entirely by TP53-independent mitotic failure.  相似文献   

6.
p53 replacement gene therapy has been carried out clinically for cancers with p53 mutations; however, some cancers are resistant to p53 gene therapy. In this study, we transduced A-172 and U251 cells harboring p53 mutations with wild-type p53 using adenovirus vectors to induce wild-type p53 protein at similar expression levels. A-172 cells did not undergo apoptosis after p53 transduction, whereas U251 cells were markedly sensitive to p53-mediated apoptosis. A-172 cells showed higher endogenous expression of Bcl-X(L) than U251, and transduction of Bcl-X(L) repressed p53-mediated apoptosis in U251 cells, suggesting that high endogenous expression of Bcl-X(L) renders A-172 cells, at least in part, resistant to p53-mediated apoptosis. We transduced A-172 cells and U251 cells with the Apaf-1 or caspase-9 genes; both are downstream components of p53-mediated apoptosis. We found that A-172 cells were highly sensitive to Apaf-1- and caspase-9-mediated apoptosis. The results indicate that A-172 cells harboring mutant p53 were not susceptible to p53-mediated apoptosis, possibly due to high endogenous expression of Bcl-X(L). Transduction of Apaf-1 or caspase-9 would override the resistance mechanism of apoptosis in A-172 cells. These findings provide potentially a novel approach in killing cancers that are resistant to p53 replacement gene therapy.  相似文献   

7.
We have shown that nitric oxide production is dramatically decreased in rat primary hepatocyte cultures exposed to galactosamine. Cotreatment of the cells with uridine, which is known to prevent cytotoxicity, was found to also attenuate NO loss. In the present study, two possible mechanisms for the decreased nitric oxide production were examined. First, we examined the possibility that galactosamine could interfere with the uptake of extracellular arginine by the cultured hepatocytes. Cellular uptake of arginine was determined after addition of 14C-arginine at the time of hepatocyte attachment. Uptake of arginine was rapid in control cultures, and both the rate and level of uptake were unchanged by the addition of a cytotoxic concentration of galactosamine (4 mM). In addition, increased concentrations of arginine in the cell culture medium did not ameliorate the galactosamine-induced decrease in production of nitric oxide. Second, we determined whether the synthesis of inducible nitric oxide synthase in the hepatocyte cultures was inhibited by addition of galactosamine. Hepatocyte levels of inducible nitric oxide synthase were determined immunochemically at various times after the addition of galactosamine (4 mM). In control cultures, inducible nitric oxide synthase was detectable at 7 and 24 hours after attachment. In contrast, no nitric oxide synthase protein was detectable at any time in the galactosamine-treated cultures. Furthermore, addition of galactosamine after inducible nitric oxide synthase had already been synthesized (6.5 h after attachment) did not result in suppression of nitric oxide production in the hepatocyte cultures. The present studies suggest that galactosamine suppresses nitric oxide production in hepatocyte cultures by inhibiting synthesis of inducible nitric oxide synthase, rather than by interference in cellular uptake of arginine.  相似文献   

8.
MOLT-4 cells undergo apoptosis after X irradiation. A radiosensitive variant, MOLT-4N1, and a radioresistant variant, MOLT-4N2, have been studied with respect to their radiosensitivity and its relationship to the levels of TP53 protein (formerly known as p53). X irradiation induces apoptosis in both cell lines with the following difference: The induction of apoptosis in MOLT-4N2 cells occurred later than in MOLT-4N1 cells as determined by the morphological changes and DNA fragmentation. The levels of cell death measured by the dye exclusion test coincided with the levels of apoptosis in both cell lines, suggesting that radiation-induced cell killing is determined by the induction of apoptosis. Unirradiated MOLT-4N1 cells contained a significantly higher intracellular level of TP53 protein and a much higher level of TP53 mRNA compared to MOLT-4N2 cells. X irradiation led to an accumulation of TP53 protein in both cell lines that was greater in MOLT-4N1 cells. This accumulation of TP53 protein preceded changes in DNA degradation and ladder formation and in nuclear morphology. These results strongly suggest that the radiosensitivity of MOLT-4 cells correlates well with the unirradiated control levels of TP53 mRNA and TP53 protein, and that the quantitative levels of TP53 protein must reach a threshold for the cells to undergo apoptosis.  相似文献   

9.
The existence of an inducible mitochondrial nitric oxide synthase has been recently related to the nitrosative/oxidative damage and mitochondrial dysfunction that occurs during endotoxemia. Melatonin inhibits both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase activities, a finding related to the antiseptic properties of the indoleamine. Hence, we examined the changes in inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase expression and activity, bioenergetics and oxidative stress in heart mitochondria following cecal ligation and puncture-induced sepsis in wild-type (iNOS(+/+)) and inducible nitric oxide synthase-deficient (iNOS(-/-)) mice. We also evaluated whether melatonin reduces the expression of inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase, and whether this inhibition improves mitochondrial function in this experimental paradigm. The results show that cecal ligation and puncture induced an increase of inducible mitochondrial nitric oxide synthase in iNOS(+/+) mice that was accompanied by oxidative stress, respiratory chain impairment, and reduced ATP production, although the ATPase activity remained unchanged. Real-time PCR analysis showed that induction of inducible nitric oxide synthase during sepsis was related to the increase of inducible mitochondrial nitric oxide synthase activity, as both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase were absent in iNOS(-/-) mice. The induction of inducible mitochondrial nitric oxide synthase was associated with mitochondrial dysfunction, because heart mitochondria from iNOS(-/-) mice were unaffected during sepsis. Melatonin treatment blunted sepsis-induced inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase isoforms, prevented the impairment of mitochondrial homeostasis under sepsis, and restored ATP production. These properties of melatonin should be considered in clinical sepsis.  相似文献   

10.
The expression of inducible nitric-oxide synthase in melanoma tumor cells was recently shown to correlate strongly with poor patient survival after combination biochemotherapy (p<0.001). Furthermore, evidence suggests that nitric oxide, a reaction product of nitric oxide synthase, exhibits antiapoptotic activity in melanoma cells. We therefore hypothesized that nitric oxide antagonizes chemotherapy-induced apoptosis. Whether nitric oxide is capable of regulating cell growth and apoptotic responses to cisplatin treatment in melanoma cell lines was evaluated. We demonstrate herein that depletion of endogenously produced nitric oxide can inhibit melanoma proliferation and promote apoptosis. Moreover, our data indicate that the depletion of nitric oxide leads to changes in cell cycle regulation and enhances cisplatin-induced apoptosis in melanoma cells. Strikingly, we observed that the depletion of nitric oxide inhibits cisplatin-induced wild type p53 accumulation and p21(Waf1/Cip1/Sdi1) expression in melanoma cells. When cisplatin-induced p53 binding to the p21(Waf1/Cip1/Sdi1) promoter was examined, it was found that nitric oxide depletion significantly reduced the presence of p53-DNA complexes after cisplatin treatment. Furthermore, dominant negative inhibition of p53 activity enhanced cisplatin-induced apoptosis. Together, these data strongly suggest that endogenously produced nitric oxide is required for cisplatin-induced p53 activation and p21(Waf1/Cip1/Sdi1) expression, which can regulate melanoma sensitivity to cisplatin.  相似文献   

11.
12.
Although extensive data indicate that the tumor suppressor TP53 modifies the radiation responses of human and rodent cells, the exact relationship between TP53 and radiation responsiveness remains controversial. To elucidate the relevance of endogenous TP53 genomic status to radiosensitivity in a cell-type-independent manner, different cells of 10 human tumor cell lines with different tissues of origin were examined for TP53 status. The TP53 status was compared with radiation-related cell survival parameters (D(q), D(0), SF2) and with the mode of cell death. Different modes of cell death were examined by measuring radiation-induced micronucleation, apoptosis and abnormal cells. Alterations of the TP53 gene were detected in eight cell lines. No splicing mutation was found. Five cell lines showed codon 68 polymorphism. Codon 72 alterations were found in four cell lines. "Hot spot" alterations were detected in only two of 10 cell lines. Although the cells differed widely in survival parameters (D(q), D(0), SF2) and modes of cell death (micronucleation/apoptosis/abnormal cells) after irradiation, significant cell-type-independent correlations were obtained between the multiple cell death parameter micronucleation/apoptosis/abnormal cells and SF2 (P < 0.001) and D(q) (P = 0.003). Moreover, cells with a wild-type TP53 gene were more resistant to X rays than cells with a mutated TP53 gene or cells that were TP53-deficient. The alterations within exons 5-10 of the TP53 correlated with a enhanced radiosensitivity. For the first time, we demonstrated a correlation between endogenous genetic alterations within exons 5-10 of TP53 and radiation-related cell survival and cell death. This indicates a new molecular relevance of TP53 status to intrinsic cellular radiosensitivity.  相似文献   

13.
A role of heat shock protein 27 (HSP27) as a potential biomarker has been reported in various tumour entities, but comprehensive studies in pancreatic cancer are lacking. Applying tissue microarray (TMA) analysis, we correlated HSP27 protein expression status with clinicopathologic parameters in pancreatic ductal adenocarcinoma specimens from 86 patients. Complementary, we established HSP27 overexpression and RNA-interference models to assess the impact of HSP27 on chemo- and radiosensitivity directly in pancreatic cancer cells. In the TMA study, HSP27 expression was found in 49% of tumour samples. Applying univariate analyses, a significant correlation was found between HSP27 expression and survival. In the multivariate Cox-regression model, HSP27 expression emerged as an independent prognostic factor. HSP27 expression also correlated inversely with nuclear p53 accumulation, indicating either protein interactions between HSP27 and p53 or TP53 mutation-dependent HSP27-regulation in pancreatic cancer. In the sensitivity studies, HSP27 overexpression rendered HSP27 low-expressing PL5 pancreatic cancer cells more susceptible towards treatment with gemcitabine. Vice versa, HSP27 protein depletion in HSP27 high-expressing AsPC-1 cells caused increased gemcitabine resistance. Importantly, HSP27 expression was inducible in pancreatic cancer cell lines as well as primary cells. Taken together, our study suggests a role for HSP27 as a prognostic and predictive marker in pancreatic cancer. Assessment of HSP27 expression could thus facilitate the identification of specific patient subpopulations that might benefit from individualized treatment options. Additional studies need to clarify whether modulation of HSP27 expression could represent an attractive concept to support the incorporation of hyperthermia in clinical treatment protocols for pancreatic cancer.  相似文献   

14.
To examine whether protein kinase C (PKC) contributes to p53-dependent WAF1 induction after heat treatment, the effects of calphostin C (CAL), a specific inhibitor of PKC, on WAF1 induction were analyzed by PKC activity and gel mobility-shift assays and Western blot analysis in human glioblastoma cell lines. Heat-induced accumulation of WAF1 in A-172 cells carrying wild-typep53(wtp53) was suppressed by CAL in a dose-dependent manner. In T98G cells carrying mutantp53(mp53), no significant accumulation of WAF1 was observed after heat treatment and CAL exerted no significant effects on this response of T98G cells. In accordance with the accumulation of WAF1, heat-induced activation of the binding ability of p53 to p53 consensus sequence (p53 CON) was suppressed by CAL in A-172 cells but no DNA-binding activity was observed in the mp53 in T98G cells. PKC in A-172 cells was activated rapidly (within 5 min) after heat treatment in the membrane fraction but not in the cytosolic fraction. When the cell lines were treated with the PKC activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), WAF1 was accumulated in A-172 cells in a dose-dependent manner but not in T98G cells. In addition, the cellular contents of WAF1 after heating did not increase in A-172 cells transformed with mp53.These results suggest that PKC contributes to heat-induced signal transduction leading to p53-dependent WAF1 induction in a way that PKC is involved in the specific DNA-binding activation of p53.  相似文献   

15.
Macrophages produce nitric oxide (NO) via the inducible nitric oxide synthase as part of a successful response to infection. The gene norB of Neisseria meningitidis encodes a NO reductase which enables utilization and consumption of NO during microaerobic respiration and confers resistance to nitrosative stress-related killing by human monocyte-derived macrophages (MDM). In this study we confirmed that NO regulates cytokine and chemokine release by resting MDM: accumulation of TNF-alpha, IL-12, IL-10, CCL5 (RANTES) and CXCL8 (IL-8) in MDM supernatants was significantly modified by the NO-donor S-nitroso-N-penicillamine (SNAP). Using a protein array, infection of MDM with N. meningitidis was shown to be associated with secretion of a wide range of cytokines and chemokines. To test whether NO metabolism by N. meningitidis modifies release of NO-regulated cytokines, we infected MDM with wild-type organisms and an isogenic norB strain. Resulting expression of the cytokines TNF-alpha and IL-12, and the chemokine CXCL8 was increased and production of the cytokine IL-10 and the chemokine CCL5 was decreased in norB-infected MDM, in comparison to wild-type. Addition of SNAP to cultures infected with wild-type mimicked the effect observed in cultures infected with the norB mutant. In conclusion, NorB-catalysed removal of NO modifies cellular release of NO-regulated cytokines and chemokines.  相似文献   

16.
Inactivation of the Staphylococcus aureus tricarboxylic acid (TCA) cycle delays the resolution of cutaneous ulcers in a mouse soft tissue infection model. In this study, it was observed that cutaneous lesions in mice infected with wild-type or isogenic aconitase mutant S. aureus strains contained comparable inflammatory infiltrates, suggesting the delayed resolution was independent of the recruitment of immune cells. These observations led us to hypothesize that staphylococcal metabolism can modulate the host immune response. Using an in vitro model system involving RAW 264.7 cells, the authors observed that cells cultured with S. aureus aconitase mutant strains produced significantly lower amounts of nitric oxide (NO(?)) and an inducible nitric oxide synthase as compared to those cells exposed to wild-type bacteria. Despite the decrease in NO(?) synthesis, the expression of antigen-presentation and costimulatory molecules was similar in cells cultured with wild-type and those cultured with aconitase mutant bacteria. The data suggest that staphylococci can evade innate immune responses and potentially enhance their ability to survive in infected hosts by altering their metabolism. This may also explain the occurrence of TCA cycle mutants in clinical S. aureus isolates.  相似文献   

17.
Acute low-dose irradiation (0.1-1 Gy, 1.33 Gy/min) of cells of a human glioblastoma cell line, A-172, induced a dose-dependent monophasic accumulation of TP53 (formerly known as p53) and CDKN1A (formerly known as WAF1). In contrast, chronic gamma irradiation (0.001 Gy/min) produced a clear biphasic response of accumulation TP53 with the first peak at 1.5 h (0.09 Gy) and the second peak at 10 h (0.54 Gy). Significantly, when the cells were preirradiated with a chronic dose of gamma irradiation for 24 h (1.44 Gy) or 50 h (3 Gy), they no longer responded to an acute challenging dose to produce a dose-dependent response of the TP53 pathway. These findings suggest that chronic irradiation at low dose rate alters the TP53-dependent signal transduction pathway. Wearing away of the TP53 pathway by chronic exposure to radiation may have important implications for radiation protection.  相似文献   

18.
It has been reported that ligands of the macrophage scavenger receptor (MSR) induce a range of cellular responses including urokinase-type plasminogen activator and the production of inflammatory cytokines. Although nitric oxide (NO) is an important regulatory molecule in physiological functions such as vascular homeostasis, neurotransmission, and host defense, the effect of MSR ligands on NO production from macrophages was unknown. Here, we demonstrate that the MSR ligand, fucoidan, but neither oxidized low-density lipoprotein, acetylated LDL, maleylated bovine serum albumin nor dextran sulfate induces activation of inducible nitric oxide synthase (iNOS) promoter or NO production in RAW264.7 cells. Furthermore, we investigated the molecular mechanism by which fucoidan induces iNOS promoter activation. Using different inhibitors, we showed that the stimulation of fucoidan was mediated by both the p38 mitogen-activated protein kinase and the NF-kappaB-dependent pathways. Although these two pathways were independent, heat shock protein 90 (HSP90) played a significant role in both pathways. Our previous study showed that HSP90 directly interacts with the cytoplasmic domain of MSR. These results provide the evidence that HSP90 bound to the cytoplasmic domain of MSR is implicated in MSR-mediated signal transduction. Moreover, fucoidan-induced NO production by peritoneal macrophages from MSR-knockout (MSR-/-) mice significantly decreases compared with those from wild-type mice. This is the first indication that MSR transduces the signal of fucoidan to iNOS gene expression.  相似文献   

19.
Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs) and live pigs carrying a latent TP53R167H mutant allele, orthologous to oncogenic human mutant TP53R175H and mouse Trp53R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.  相似文献   

20.
Insulin-dependent diabetes mellitus is an autoimmune disease in which pancreatic islet beta cells are destroyed by a combination of immunological and inflammatory mechanisms. In particular, cytokine-induced production of nitric oxide has been shown to correlate with beta cell apoptosis and/or inhibition of insulin secretion. In the present study, we investigated whether the interleukin (IL)-1beta intracellular signal transduction pathway could be blocked by overexpression of dominant negative forms of the IL-1 receptor interacting protein MyD88. We show that overexpression of the Toll domain or the lpr mutant of MyD88 in betaTc-Tet cells decreased nuclear factor kappaB (NF-kappaB) activation upon IL-1beta and IL-1beta/interferon (IFN)-gamma stimulation. Inducible nitric oxide synthase mRNA accumulation and nitrite production, which required the simultaneous presence of IL-1beta and IFN-gamma, were also suppressed by approximately 70%, and these cells were more resistant to cytokine-induced apoptosis as compared with parental cells. The decrease in glucose-stimulated insulin secretion induced by IL-1beta and IFN-gamma was however not prevented. This was because these dysfunctions were induced by IFN-gamma alone, which decreased cellular insulin content and stimulated insulin exocytosis. These results demonstrate that IL-1beta is involved in inducible nitric oxide synthase gene expression and induction of apoptosis in mouse beta cells but does not contribute to impaired glucose-stimulated insulin secretion. Furthermore, our data show that IL-1beta cellular actions can be blocked by expression of MyD88 dominant negative proteins and, finally, that cytokine-induced beta cell secretory dysfunctions are due to the action of IFN-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号