首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhopalosiphum padi L. (Homoptera: Aphididae) is sensitive to loline alkaloids present in tall fescue, Festuca arundinacea Shreb., infected with the endophytic fungus, Acremonium coenophialum Morgan-Jones & Gams. Aphid survival was higher on endophyte-free plants regardless of plant age after germination or age of regrowth tissue after clipping. Survival of aphids on endophyte-infected grass was lower on young tissue but increased as plants aged, although it never reached the same level on endophyte-free plants. Both N-formyl and N-acetyl loline increased as uncut or regrowth tissue aged; however, this was influenced by the age of the plant at the initial cut and the clipping frequency. Although even small amounts of loline cause high aphid mortality, the aphids are able to survive on endophyte-infected plants if the tillers have senescing leaves which contain lower amounts of loline. Preference for senescing leaves may help R. padi avoid plant parts containing high amounts of toxic allelochemicals, thus contributing to higher numbers of aphids on older, endophyte-infected plants.  相似文献   

2.
Lemons A  Clay K  Rudgers JA 《Oecologia》2005,145(4):595-604
Mutualisms can strongly affect the structure of communities, but their influence on ecosystem processes is not well resolved. Here we show that a plant–microbial mutualism affects the rate of leaf litter decomposition using the widespread interaction between tall fescue grass (Lolium arundinaceum) and the fungal endophyte Neotyphodium coenophialum. In grasses, fungal endophytes live symbiotically in the aboveground tissues, where the fungi gain protection and nutrients from their host and often protect host plants from biotic and abiotic stress. In a field experiment, decomposition rate depended on a complex interaction between the litter source (collected from endophyte-infected or endophyte-free plots), the decomposition microenvironment (endophyte-infected or endophyte-free plots), and the presence of mesoinvertebrates (manipulated by the mesh size of litter bags). Over all treatments, decomposition was slower for endophyte-infected fescue litter than for endophyte-free litter. When mesoinvertebrates were excluded using fine mesh and litter was placed in a microenvironment with the endophyte, the difference between endophyte-infected and endophyte-free litter was strongest. In the presence of mesoinvertebrates, endophyte-infected litter decomposed faster in microenvironments with the endophyte than in microenvironments lacking the endophyte, suggesting that plots differ in the detritivore assemblage. Indeed, the presence of the endophyte in plots shifted the composition of Collembola, with more Hypogastruridae in the presence of the endophyte and more Isotomidae in endophyte-free plots. In a separate outdoor pot experiment, we did not find strong effects of the litter source or the soil microbial/microinvertebrate community on decomposition, which may reflect differences between pot and field conditions or other differences in methodology. Our work is among the first to demonstrate an effect of plant–endophyte mutualisms on ecosystem processes under field conditions.  相似文献   

3.
We studied the effects of fungal endophyte infection of meadow ryegrass (Lolium pratense=Festuca pratensis) on the frequency of the barley yellow dwarf virus (BYDV). The virus is transferred by aphids, which may be deterred by endophyte-origin alkaloids within the plant. In our experiment, we released viruliferous aphid vectors on endophyte-infected and endophyte-free plants in a common garden. The number of aphids and the percentage of BYDV infections were lower in endophyte-infected plants compared to endophyte-free plants, indicating that endophyte infection may protect meadow ryegrass from BYDV infections.  相似文献   

4.
1. Female Sprague-Dawley rats (Rattus norvegicus) were randomly assigned to various dietary treatments containing: (1) 100% Purina rodent chow, ad libitum; (2) same as 1, but restricted to daily intake of 7; (3) 50% rodent chow (w/w) and 50% endophyte-free tall fescue (Festuca arundinacea) seed; (4) same as 3, but restricted to intake of 5; (5) 50% rodent chow, 25% endophyte-free tall fescue seed and 25% endophyte-infected (Acremonium coenophialum) tall fescue seed; (6) 50% rodent chow, 12.5% endophyte-free and 37.5% endophyte-infected tall fescue seed; and (7) 50% rodent chow and 50% endophyte infected tall fescue seed. 2. Average daily feed intakes and average daily weight gains decreased with higher levels of endophyte infected seed. 3. Frequency of litter production was affected by all endophyte-infected containing diets. 4. Conception was reduced only in dietary treatment (7). 5. Litter weights, number of pups per litter and weight per pup were proportionally reduced as higher levels of infected seed were incorporated in the ingested diets.  相似文献   

5.
Laboratory experiments were conducted to compare the expression of Diuraphis noxia (Mordvilko) (Homoptera: Aphididae) resistance in four plant introduction (PI) lines of wild barley (Hordeum) infected with different species or strains of endophytic fungi (tribe Balansieae, family Clavicipitaceae, Neotyphodium gen. nov. [formerly Acremonium]). Aphid densities were significantly lower on endophyte-infected plants of PI 314696 (H. bogdanii Wilensky) and PI 440420 (H. brevisubulatum subsp. violaceum (Boissier & Hohenacker)), compared with densities on endophyte-free plants of both PI lines in population growth experiments. This endophyte- associated resistance was the result of antibiosis effects or starvation. In other experiments, endophyte-free plants of PI 269406 and PI 440413 (H. bogdanii) were not superior to endophyte-infected conspecifics as host plants of D. noxia. Our results demonstrate the influence of host plant species/genotype and endophyte species/strain on expression of aphid resistance, provide an explanation of the high levels of D. noxia resistance in PI 314696 and PI 440420 previously reported in the literature, and underscore the potential importance of endophytic fungi in conferring insect resistance in wild barley.  相似文献   

6.
The presence of the endophytic fungusAcremonium coenophialum Morgan-Jones et Gams in tall fescue (Festuca arundinacea Schreb.) induces toxicity when this grass is grazed by cattle; however, there is evidence that removing the endophyte reduces the stand vigor and longevity of fescue. A field trial was conducted to determine the effects of water supply and the presence of the endophytic fungus on plant growth, drought tolerance, and soil nematode populations in Kentucky 31 tall fescue. The design included two factors, level of endophyte infection (0 and 75%) and irrigation regime (none, low, and high). Where water deficits occurred, herbage yield and leaf area were lower, and percentage dead tissue and canopy minus air temperature were greater in endophyte-free compared with endophyte-infected fescue. Soil populations ofPratylenchus scribneri andTylenchorhynchus acutus were substantially higher in the noninfected than in the endophyte-infected plots. The endophyte apparently confers drought tolerance to Kentucky 31 tall fescue, and this effect may be at least partially mediated through enhanced resistance to soil-borne nematodes.Published with the approval of the Director of the Ark. Agric. Exp. Stn.  相似文献   

7.
Recently the role of micro-organisms as mediators of plant-herbivore interactions has been increasingly acknowledged in ecological research. We investigated the interaction between an unspecialized root fungal endophyte (Acremonium strictum) and the polyphagous moth Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), in greenhouse and laboratory bioassays. Specifically we examined in tomato (Lycopersicon esculentum Mill.) the systemic effects of the endophytic fungus on the host selection behaviour of female moths for oviposition and the volatile profiles of host plants to understand the mechanisms acting in this multi-trophic model system. Both laboratory and field strains of H. armigera moths oviposited more on leaves of A. strictum inoculated plants as compared to endophyte-free plants, both in free flight cages and in tethered moth laboratory experiments; the moth’s preferences were significant between 10 and 18 days after inoculation. The analysis of volatile profiles showed strong quantitative differences between treatments. Endophyte inoculated plants emitted diverse terpenes and sesquiterpenes at significantly lower amounts as compared to endophyte free-plants, except for α-terpinene, which did not differ between the treatments, and trans-β-caryophyllene, which was emitted in significantly higher amounts on inoculated plants. β-Thujene and α-phellandrene accounted for 73.3 and 12.0% of total amounts of volatiles emitted from endophyte-free and inoculated plants, respectively. Our findings demonstrate that A. strictum is able to systemically influence the host selection of H. armigera moths for oviposition; conceivably mediated by the induced changes in volatile emissions (and probably additional biochemical parameters of the host plants, which have not been analysed so far). We argue for a more detailed assessment of micro-organisms invisibly colonizing plants, when studying plant-herbivore or multitrophic interactions.  相似文献   

8.
Phosphorus (P) deficiency increased the secretion of phytases from roots of various plant species. The secretory phytases were collected with a dialysis membrane tube for 24 hours from roots of sixteen plant species grown with low or adequate supply of P in nutrient solutions. The activity of not only secretory phytase, but also acid phosphatase, increased with the low P treatment in all of the plant species examined. Secretion of phytase by the roots under P-deficient conditions was highest in Brachiaria decumbens CIAT 606, Stylosanthes guianensis CIAT 184 and tomato, moderate in Brachiaria brizantha CIAT6780, Stylosanthes guianensis CIAT 2950, alfalfa, white clover and orchard grass, and lowest in Andropgon gayanus CIAT 621, Stylosanthes capitata CIAT 10280, upland rice, timothy, redtop, alsike clover, red clover and white lupin plants. An immunoreactive protein band that reacted with a polyclonal antibody raised against wheat bran phytase, corresponding to molecular weight 35–40 kD, could be detected in seven of the species tested. These results indicate that the secretory phytase may provide an efficient mechanism for certain plants to utilize inositol hexaphosphate in soil.  相似文献   

9.
Three grass host species--tall fescue, Festuca arundinacea Schreber; meadow fescue, Festuca pratensis Hudson; and perennial ryegrass, Lolium perenne L.--each infected with a number of different Neotyphodium endophyte isolates, were investigated for their effects on fall armyworm, Spodoptera frugiperda (J.E. Smith). Alkaloid profiles varied among associations. Choice and no-choice tests comparing feeding and early development of S. frugiperda larvae on endophyte-infected and endophyte-free leaf blade material were performed. Endophyte-mediated resistance to S. frugiperda was greatest in meadow fescue and weakest in tall fescue. Some endophyte isolates, particularly in perennial ryegrass and meadow fescue, had a major effect on feeding and development of S. frugiperda, whereas others had no effect or were only weakly efficacious. In tall fescue, some associations deterred S. frugiperda from feeding in choice tests but had no effect on development, whereas larvae reared on other associations weighed significantly more than control larvae fed endophyte-free grass. It was concluded that the deleterious consequences of endophyte infection were easily masked by other factors in tall fescue. Relative leaf age had no effect on feeding preferences in the three host species. Chemical analysis of herbage from the plants used, and results from a no-choice study using spiked artificial diets, failed to individually implicate any of the major known alkaloids (peramine, lolitrem B, ergovaline, and lolines) in the observed effects on S. frugiperda. Hypotheses explaining these observations, and their impact on creating desirable grass-endophyte associations for use in pastures, are discussed.  相似文献   

10.
Acremonium coenophialum, a fungal endosymbiont in tall fescue, is responsible for the production of alkaloid toxins. Animals grazing endophyte-infected tall fescue often show toxicosis. In marginal environments, the endophyte is important for long-term survival of tall fescue. Few differences in endophyte isolates from individual tall fescue plants have been reported. To aid development of a toxicosis-free tall fescue, it is important to identify differences in endophyte isolates. This report describes variation in nitrogen utilization in a defined culture medium by endophyte isolates from Kentucky-31 tall fescue. Overall, the best nitrogen sources for dry weight production of mycelium were proline and potassium nitrate. Thirty-four isolates grown on agar-solidified defined media with single nitrogen sources showed variation in nitrogen utilization. Fifty percent of the isolates were unable to utilize two or more amino acids. Manipulation of endophyte variation could lead to development of a toxicosis-free tall fescue cultivar.  相似文献   

11.
《Phytochemistry》1987,26(4):969-971
Paxilline has been identified as a metabolite of the ryegrass endophyte Acremonium loliae in submerged culture and as a component, with lolitrem B, of the seed of endophyte-infected ryegrass. A role for paxilline as a biosynthetic precursor of lolitrem B is discussed.  相似文献   

12.
Complex biotic interactions shape ecological communities of plants, herbivores and their natural enemies. In studies of multi-trophic interactions, the presence of small, invisible micro-organisms associated with plants and those of a fourth above-ground trophic level have often been neglected. Incorporating these neglected factors improves our understanding of the processes within a multi-trophic network. Here, we ask whether the presence of a fungal endosymbiont, which alters plant quality by producing herbivore-toxic substances, trickles up the food chain and affects the performance and host-selection behaviour of aphid secondary parasitoids. We simultaneously offered hosts from endophyte-free and endophyte-infected environments to secondary parasitoids. Older and more experienced parasitoid females discriminated against hosts from the endophyte-infected environment. Developing in lower quality hosts from the endophyte-infected environment reduced the lifespan of secondary parasitoids. This indicates that aphid secondary parasitoids can perceive the disadvantage for their developing offspring in parasitoids from the endophyte environment and can learn to discriminate against them. In the field, this discrimination ability may shift the success of primary parasitoids to endophyte-infected plants, which co-occur with endophyte-free plants. Ultimately, the control of aphids depends on complex interactions between primary and secondary parasitoids and their relative sensitivity to endophytic fungi.  相似文献   

13.
Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and (15)N(2) gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis.  相似文献   

14.
Symbiotic associations between grasses and vertically transmitted endophytic fungi are widespread in nature. Within grass populations, changes in the frequency of infected plants are driven by influence of the endophyte on the fitness of their hosts and by the efficiency of endophyte transmission from parent plants to their offspring. During the seed stage, the endophyte might influence the fitness of its host by affecting the rate of seed viability loss, whereas the efficiency of endophyte transmission is affected by losses of viability of the fungus within viable seeds. We assessed the viability losses of Lolium multiflorum seeds with high and low level of infection of the endophyte Neotyphodium occultans, as well as the loss of viability of the fungus itself, under accelerated seed ageing and under field conditions. Starting with high endophyte-infected accessions of L. multiflorum, we produced their low endophyte-infected counterparts by treating seeds with a fungicide, and subsequently multiplying seeds in adjacent plots allowing pollen exchange. In our accelerated ageing experiments, which included three accessions, high endophyte-infected seeds lost viability significantly faster than their low endophyte-infected counterpart, for only one accession. High endophyte-infected seeds of this particular accession absorbed more water than low endophyte-infected seeds. In contrast, the endophyte lost viability within live seeds of all three accessions, as the proportions of viable seeds producing infected seedlings decreased over time. In our field experiment, which included only one accession, high endophyte-infected seed lost viability significantly but only slightly faster than low endophyte-infected seed. In contrast, the loss of viability of the endophyte was substantial as the proportions of viable seeds producing infected seedlings decreased greatly over time. Moving the seeds from the air to the soil surface (simulating seed dispersion off the spikes) decreased substantially the rate of seed viability loss, but increased the rate of endophyte viability loss. Our experiments suggest that, in ageing seed pools, endophyte viability loss and differential seed mortality determine decreases in the proportions of endophyte-infected seeds in L. multiflorum. Endophyte viability loss within live seeds contributes substantially more to infection frequency changes than differential viability losses of infected and non-infected seeds.  相似文献   

15.
The occurrence of endophytic fungi in fennel, lettuce, chicory, and celery crops was investigated in southern Italy. A total of 186 symptomless plants was randomly collected and sampled at the stage of commercial ripeness. Fungal species of Acremonium, Alternaria, Fusarium, and Plectosporium were detected in all four crops; Plectosporium tabacinum was the most common in all crop species and surveyed sites. The effect of eight endophytic isolates (five belonging to Plectosporium tabacinum and three to three species of Acremonium) inoculated on lettuce plants grown in gnotobiosis was assessed by recording plant height, root length and dry weight, collar diameter, root necrosis, and leaf yellowing. P. tabacinum and three species of Acremonium, inoculated on gnotobiotically grown lettuce plants, showed pathogenic activity that varied with the fungal isolate. Lettuce plants inoculated with the isolates Ak of Acremonium kiliense, Ac of Acremonium cucurbitacearum, and P35 of P. tabacinum showed an increased root growth, compared to the non-inoculated control. The high frequency of P. tabacinum isolation recorded in lettuce plants collected in Bari and Metaponto, and in fennel plants from Foggia agricultural districts, suggests a relationship not only between a crop species and P. tabacinum, but also between the occurrence of the endophyte and the crop rotation history of the soil.  相似文献   

16.
A total of 84 bacterial endophytes were isolated from seeds of 6 cultivars of ornamental hostas, and they were identified to 5 species based on morphological characteristics and 16S rDNA sequence analysis. Among them, the strain ‘Blu-v2’, which was isolated from the seeds of cultivar ‘Blue Umbrella’ and identified to be Bacillus amyloliquefaciens, showed highest antifungal activity and capacity to deter feeding by Fall armyworms (Spodoptera fruigiperda). Lipopeptides in cultures of Blu-v2 were determined using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and its antifungal activities were verified. However, the lipopeptide preparation did not show toxicity to larvae of Fall armyworms. In a greenhouse experiment, Blu-v2 was inoculated into small plantlets of hosta (cultivar ‘Rainforest Sunrise’). The leaves of plants with bacteria (endophyte-infected?=?E+) and without bacteria (endophyte-free?=?E?) were used in seven-day feeding experiments employing fourth-instar larvae of Fall armyworms. We found that there was a significant decrease in the weights of larvae fed with E+ compared to E? plants; and the mortality rate of larvae fed with E? leaves was lower (3.33%) compared to that of larvae fed with E+ leaves (30%). Based on our studies, we suggest that endophytic B. amyloliquefaciens strain Blu-v2 has potential value as a biocontrol agent to reduce damage from fungal diseases and insect pests of hosta cultivars.  相似文献   

17.
Neotyphodium endophytes are assumed to have mutualistic relationship with their grass hosts, mainly resulting from mycotoxin production increasing plant resistance to herbivores by the fungus that subsists on the plant. To study importance of often ignored environmental effects on these associations, we performed a greenhouse experiment to examine the significance of endophyte infection and nutrient availability for bird-cherry aphid (Rhopalosiphum padi) performance on meadow fescue (Lolium pratense). Naturally endophyte-infected (E+), uninfected (E–), or manipulatively endophyte-free (ME–) half-sib families of meadow fescue were grown on two soil nutrient levels. Endophyte infection reduced aphid performance in general. However, to our knowledge, this is the first study to demonstrate experimentally that herbivore performance decreases on E+ host plants with increasing availability of nutrients in soils. Potential improvement in herbivore performance in high nutrient soils and decreased plant performance in low nutrient soils in ME– plants, compared to E– and E+ plants, suggests that loss of endophyte infection after long coevolutionary relationship may be critical to plant fitness.  相似文献   

18.
Abstract.  1. The production of winged morphs is a well known mechanism of induced defence in aphids to escape from natural enemies, and is also a reaction to poor resource quality.
2. Host plants of aphids often associate with endophytic fungi that have been shown to reduce the fitness of some species of aphids.
3. It was hypothesised that endophyte infection of host plants that represent a low quality plant resource should increase the aphid's induced response to a predator because both low plant quality and predator presence represent a stronger cue for wing production than predator presence alone.
4. In a laboratory experiment, bird cherry-oat aphids Rhopalosiphum padi L. were exposed to the factors predator threat and endophyte infection and the effects of these factors on the proportion of winged morphs produced by the aphid colonies was analysed.
5. The presence of endophytic fungi strongly decreased aphid colony sizes. When a predator threat was present, all colonies on endophyte-free grasses produced winged morphs whereas only a few colonies were able to produce winged morphs on endophyte-infected grasses. However, these few colonies produced larger proportions of winged morphs than colonies on endophyte-free grasses. Without a predator threat, no colonies on endophyte-infected grasses produced any winged morphs.
6. These results show that aphids in stressed conditions and with reduced fitness will only invest in inducible defences when predators are present but are unable to produce winged morphs in response to endophyte presence.  相似文献   

19.
An expedment was designed to determine the effect of the fungal endophyte Neotyphodium lolii on the growth, physiological parameters and mineral element content of perennial ryegrass (Lolium perennel L.), when growing at two N supply levels. Endophyfe infection had a significant positive effect on both shoot and root growth of ryegrass, but this difference was only significant in the high N supply treatment. At high N supply, endophyte-infected (EI) plants accumulated more soluble sugar in the sheath and the root than endophyte-free (EF) plants. Endophyte infection affected mineral element concentrations In the root more than in the shoot. We found a significant effect of endophyte infection on B, Mn and Mg in the root, but significant effect was only found on B in the shoot. EI plants tended to accumulate less B in the shoot at both N levels, but accumulated more B, Mn and Mg in the root at low N levels. The difference of growth parameters in different periods was significant. The content of soluble sugar and crude protein in the sheath were also dependent on the growth stages of both EI and EF plants.  相似文献   

20.
1. Fungal endophytes are ubiquitous associates of virtually all plant species. Although many studies have focused on the role of these microorganisms as mediators of plant–herbivore interactions, these studies have usually been conducted using short‐term experiments. 2. Truly effective defences against herbivores may require normal functioning of the plant, as excised leaves may be less resistant as compared with those still attached to the plant. Yet, most studies investigating possible effects of endophytes in conferring host resistance to herbivores have been conducted with plant parts rather than intact plants. 3. Using the root endophytic fungus (Acremonium strictum)—broad bean (Vicia faba)—generalist herbivore (Helicoverpa armigera) model, we conducted experiments to examine whether endophyte effects on herbivory would depend on the experimental setting used in the investigation and whether they would translate into a subsequent generation of the herbivore. 4. Acremonium strictum negative effects on the fitness of H. armigera first generation were more evident when the larvae foraged freely on inoculated intact whole plants than when offered leaf discs of inoculated plants. Furthermore, these effects were carried over into H. armigera second generation reared on an artificial diet. 5. Acremonium strictum could not be re‐isolated from V. faba leaves; hence direct contact between the endophyte and the insect could be excluded. Alternatively, loss of volatiles or inhibitory effects of compounds that were stronger in situ might have caused changes in larval feeding and performance on leaf discs as compared with intact plants, regardless of infection status. 6. We suggest that the reduction in fitness parameters of H. armigera across two generations is caused indirectly via an endophyte‐triggered reduction in plant quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号