首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D N Wheatley 《Cytobios》1979,25(99-100):193-216
D-leucine and L-leucine produce pools of an identical nature in HeLa cells. Both isomers noncompetitively inhibit to the same extent pool formation and incorporation of valine. In the presence of D-leucine, [3H]-L-leucine at high specific activity is avidly incorporated into protein while forming a highly radioactive pool. The development of this pool was suppressed to normal levels by the presence of cycloheximide. It therefore represented a largely catabolic pool derived from proteins which had already become labelled. Discharge of pools of D-leucine followed first order kinetics and was significantly retarded when medium contained 10(-2) M of either isomer. Discharge of catabolic pools was equally as fast but the continual flow of labelled amino acid from protein sustained its intracellular level. The presence of 10(-2) to 10(-4) M leucine in the chase medium did not apparently alter the rate of discharge of this catabolic pool. The results are discussed in terms of the specificity of amino acids for different stages of the pathway leading to and from protein synthesis, and support the intracellular perfusion mechanism described elsewhere (Wheatley and Inglis, 1979).  相似文献   

2.
The levels of the endogenous amino acid pools in conidia, germinating conidia, and mycelia of wild-type Neurospora crassa were measured. Three different chromatographic procedures employing the amino acid analyzer were used to identify and quantitatively measure 28 different ninhydrin-positive compounds. All of the common amino acids were detected in conidial extracts except proline, methionine, and cystine. The levels of these three amino acid pools were also very low in mycelia. During the first hour of germination in minimal medium, the levels of most of the free amino acid pools decreased. The pool of glutamic acid, the predominant free amino acid in conidia, decreased 70% during the first hour. Very little glutamic acid or any other amino acid was excreted into the medium. During the first 20 min of germination, the decrease in the glutamic acid pool was nearly equivalent to the increase in the aspartic acid pool. The aspartic acid and lambda-aminobutyric acid pools were the only amino acid pools that increased to maximum levels within the first 20 min of germination and then decreased. It is proposed that an important metabolic event that occurs during the early stages of conidial germination is the production of reduced pyridine nucleotides. The degradation of the large glutamic acid pool existing in the conidia (2.5% of the conidial dry weight) could produce these reduced coenzymes.  相似文献   

3.
"Flooding" amino acid pools with high doses of labeled amino acids of low specific activity has been proposed to minimize the effects of recycling of amino acids derived from protein degradation on the specific activity of the amino acid precursor pool for protein synthesis. We have examined the influence of recycling on the precursor pool for protein synthesis under conditions in which plasma valine concentrations were normal (0.19 mM) and "flooded" (10-28 mM) by comparing the steady-state specific activity of the tRNA-bound valine with that of the plasma valine. Under normal and "flooding" conditions, the relative contributions of valine from protein degradation to the precursor pool were 63 and 26%, respectively; "flooding" with a plasma level of 28 mM raised the brain acid-soluble pool level to 3.1 mM but was no more effective in decreasing the relative contribution of valine from protein degradation to the precursor pool than "flooding" with a plasma level of 17 mM valine, which raised the brain acid-soluble level only to 2.3 mM. The results of these studies show that "flooding" amino acid pools does indeed reduce the effect of recycling on the precursor amino acid pool for protein synthesis, but it does not totally eliminate it.  相似文献   

4.
From the kinetics of incorporation into protein shown by four amino acids and one amino acid analogue in suspension cultured HeLa S-3 cells, two distinctly different patterns were observed under the same experimental conditions. An initial slow exponential incorporation followed by linear kinetics was characteristic of the two non-essential amino acids, glycine and proline, whereas the two essential amino acids studied, phenylalanine and leucine, showed linear kinetics of incorporation with no detectable delay. The analogue amino acid, p-fluorophenylalanine also showed immediate linear kinetics of incorporation. There was a poor correlation between the rate of formation of acid-soluble pools and incorporation kinetics. However, the rate of formation of the freely diffusible pool of amino acids correlated more closely with incorporation kinetics. The lack of direct involvement of the acid-soluble pool in protein synthesis was also demonstrated by pre-loading of pools before treatment of cells with labelled amino acids. The results partially support the hypothesis that precursor amino acids for protein synthesis come from the external medium rather than the acid-soluble pool, but suggest that the amino acid which freely diffuses into the cell from the external medium could also be the source.  相似文献   

5.
Yeast cells grown under optimal and suboptimal concentrations of biotin were analyzed for the amino acid content of their soluble pool and cellular protein. Optimally grown yeast cells exhibited a maximum amino acid content after 18 hr of growth. Biotin-deficient cells were depleted of all amino acids at 26 and 43 hr, with alanine, arginine, aspartate, cysteine, glutamate, isoleucine, leucine, lysine, methionine, serine, threonine, and valine being present in less than half the concentration observed in biotin-optimal cells. At early time intervals, the amino acid pool of biotin-deficient yeast contained lower concentrations of all amino acids except alanine. After more prolonged incubation, several amino acids accumulated in the pool of biotin-deficient yeast, but citrulline and ornithine accumulated to appreciable levels. The addition of aspartate to the growth medium resulted in a decrease in the amino acid content of biotin-optimal cells but caused a marked increase in the concentration of amino acids in biotin-deficient cells. The pools of biotin-deficient yeast grown in the presence of aspartate displayed a marked reduction in every amino acid with the exception of aspartate itself. These data provide evidence that the amino acid content of yeast cells and their free amino acid pools are markedly affected by biotin deficiency as well as by supplementation with aspartate, indicating that aspartate plays a major role in the nitrogen economy of yeast under both normal as well as abnormal nutritional conditions.  相似文献   

6.
The effects of corticostriatal deafferentation (decortication) and destruction of intrinsic neurons (intrastriatal kainate injection) on the extracellular concentration, and veratrine-releasable pools, of endogenous amino acids in the rat striatum were examined using the in vivo brain dialysis technique. Intracellular amino acid content was also determined. Decortication reduced selectively intra- and extracellular levels of glutamate (Glu) and aspartate (Asp). Extracellular changes were more pronounced than those in tissue content. gamma-Aminobutyric acid (GABA), taurine (Tau), and phosphoethanolamine (PEA) levels were not affected, whereas nonneuroactive amino acids were increased at 1 week but not at 1 month post-lesion. The intracellular pool of Glu and Asp was also reduced in kainate-lesioned striata. However, extracellular levels of these compounds were not affected significantly by this treatment. The tissue content of all other amino acids was decreased, the most prominent change being in the concentration of GABA. Extracellular GABA concentration was also reduced dramatically, whereas the concentrations of noneuroactive amino acids were increased to varying degrees. These data suggest that transmitter pools of neuroactive amino acids are an important supply for their extracellular pools. Lesion-induced alterations in nonneuroactive amino acids are discussed with regard to the loss of metabolic pools, glial reactivity, and changes in blood-brain barrier transport. Veratrine induced a massive release of neuroactive amino acids such as Glu, Asp, GABA, and Tau into the extracellular fluid, and a delayed increase in PEA. Extracellular levels of neuroactive amino acids were raised slightly. Decortication reduced, selectively, the amounts of Glu and Asp released by veratrine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The changes in hind leg tissue (muscle and skin) amono acid pool size and arteriovenous balance were measured in rats subjected to 0–90 min of cold exposure (4°C). Tissue free amino acid pools presented a different composition pattern from protein amino acids. Muscle rapidly reacted to cold exposure by releasing small amounts of some amino acids (alanine, aspartate), with only small changes in pool size during the first 30 min. Amino acid oxidation was very limited during the whole period of cold exposure, since at all times tested there was either nil ammonia efflux or net absorption of ammonia and glutamine; i.e. the muscle was in positive nitrogen balance throughout the period studied. Thus most of the amino acid nitrogen taken up from the blood and not found in the free amino pools must have been incorporated into protein, since it was not oxidized, as shown by the glutamine and ammonia blance. The data on amino acid incorporation into proteins indicate that hind leg protein turnover is rapidly and widely modulated from a low initial setting upon cold exposure to a higher protein synthesis rate immediately afterwards, suggesting that protein turnover may have an important role in short-term events in cold-exposed muscle, in addition to its influence in long-term adaptation.  相似文献   

8.
A cell line of Eschscholtzia californica selected for meta-fluorotyrosine (MFT) tolerance was found to have 10-fold increased levels of phenylalanine and tyrosine compared to the parent line, while most other amino acids were only increased 2-fold. Tracer experiments with shikimic acid in the presence of MFT showed that the biosynthesis of the aromatic amino acids was not impaired in the tolerant line. Feeding experiments with phenylalanine, tyrosine, or shikimic acid also revealed a reduced turnover of the pools of the aromatic amino acids in the variant. Thus undisturbed de novo biosynthesis of the aromatic amino acids and dilution of toxic effects of MFT by the enlarged pool sizes seemed to be the main reason for the acquired tolerance. Despite the enlarged availability of the precursor tyrosine, formation of the benzophenanthridine alkaloids was enhanced neither in the growth nor in the production medium.  相似文献   

9.
Measurements of internal ion concentrations, amino acid pools, and membrane potential were made across a series of HeLa subclones which are amplified for the genes for the sodium- and potassium-activated ATPase (Na,K-ATPase). These subclones expressed heterogeneous levels of ouabain-binding sites, allowing us to construct a graded amplification series. While [K+]i levels did not vary systematically across the series studied, [Na+]i ranged from 9 to 20 mM as a function of Na,K-ATPase expression. Steady-state accumulation of tetraphenylphosphonium in low versus high potassium was used to measure membrane potential. Values for [Na+]i and the membrane potential were used to calculate the sodium electrochemical potential, which was also found to be a function of Na,K-ATPase expression. Measurements of acid-soluble amino acid pools in cell lysates demonstrated that amino acids which are substrates for sodium-dependent transport systems, or which can potentially exchange through system L for a substrate of a sodium-dependent system, varied as a function of the sodium electrochemical potential. This confirmed our prediction of increased amino acid pool sizes in Na,K-ATPase-amplified lines based on observations of elevated flux through the sodium-independent system L. Finally, we measured lactate production and glycolytic potential in a subset of clones and found that both were reduced in subclones with elevated Na,K-ATPase.  相似文献   

10.
The composition of the amino acid pool during spherulation was determined. It changes in size and in composition, the concentration of each amino acid behaving individually. The first response to the onset of spherulation either by starvation or osmotic shock (0.5 M mannitol) always is a decrease of the pool's size, which during further starvation expands for a short period and then decreases again. During development induces by mannitol in the presence of external amino acids, the pool size increases continuously after the initial depletion.As shown by radioactive labeling, amino acids were actively released from the plasmodium into a medium containing amino acids, but retained by the microplasmodia in an amino acid-free medium. The kinetics of the uptake of radioactive amino acids from the medium is biphasic, indicating the existence of multiple pools. Even after a labeling period of 8 h the amino acid pool is not yet in equilibrium with the medium. The possibility of a compartimentation of the pool was confirmed by density labeling of two different enzymes.Whereas the turnover of total protein is only very low during growth, it is rather high in spherulating microplasmodia. At least 70% of the originally existing protein is degraded during this development, while, simultaneously, at least 50% of the protein present after 24 h starvation is newly synthesized during that period.  相似文献   

11.
The amino acid pool of yeast cells, Saccharomyces cerevisiae, incubated with galactose remains at a constant level for 100 minutes. This is 30 minutes beyond the time at which the oxidative phase of the induced-enzyme formation begins. Washed yeast cells, the pools of which have been depleted 60 per cent by incubation with glucose, do not replenish their pools as do washed cells incubated without a substrate. These facts indicate that the induced enzymes are formed at least partially from pool-replenishing amino acids. The time of onset of pool depletion is the time at which the aerobic fermentation phase of induced-enzyme formation begins for cells incubated with galactose. With 0.1 per cent galactose the respiratory phase begins at 100 minutes but no aerobic fermentation nor pool depletion occurs. The rates of respiration and aerobic fermentation are constant for four glucose concentrations from 0.1 to 1.0 per cent. The amount of aerobicfermentation is proportional to the initial concentration of glucose. Amino acid pool depletion occurs for all concentrations but depletion ceases and is followed by pool replenishment after aerobic fermentation is complete. Ultraviolet radiations, which delay the appearance of the respiratory phase of induced-enzyme formation, completely eliminate both the appearance of aerobic fermentation and pool depletion. The results indicate an intimate association between aerobic fermentation and amino acid pool depletion.  相似文献   

12.
In numerous cellular studies, cells labeled with radioisotopes have been separated from the labeling medium by an aqueous solution in order to determine the quantity of internalized labels; however, the aqueous wash tends to remove significant labeling from the cells. Therefore, in order to preserve all of the internalized labels, non-aqueous medium such as silicone fluids may be used. The termination of the labeling is achieved in the silicone method when, upon centrifugation, the cells separate from the medium and enter the silicone fluid to sediment to the tube bottom. This sedimentation of cells placed above a layer of silicone fluid exhibits a critical dependence on the centrifugal force, and gives rise to an uncertainty of only 2 s in determining the time of separation of cells from the medium using General Electric F-50 silicone fluid and a modified Beckman J2-21 centrifuge. It is therefore possible to determine the kinetics of incorporation of labeled amino acids into intracellular pools and proteins. In particular, since this silicone wash method determines the size of the total pool and the aqueous wash method determines the size of the acid-extractable pool, the simultaneous measurements of the size of both pools leads to the determination of the kinetics of labeling of the free amino acid pool. Among many possible applications and extensions of these methods, the studies of formation of intracellular pools and relations among different pools of transported molecules, such as water and amino acids, appear promising.  相似文献   

13.
Changes in amino acid permeation during sporulation   总被引:8,自引:6,他引:2       下载免费PDF全文
Changes in amino acid uptake in Bacillus licheniformis and in the amino acid pools of three Bacillus species were investigated, by use of cells from different stages of the life cycle. B. licheniformis contains catalytic uptake systems for all of the 10 amino acids studied. The apparent maximal velocities of uptake decreased during sporulation but did not fall below the range observed for other microorganisms. In sporulating cells, the apparent affinity constants of the uptake systems for individual amino acids remained about the same as in growing cells, i.e., from 2 x 10(-7)m to 7 x 10(-6)m, whereas, in some cases, the apparent maximal velocities decreased significantly. Because the velocity of uptake showed an atypical dependence on substrate concentration, it was postulated that these cells contain two or more uptake systems for each amino acid. Only one of these systems appeared to be operative at a substrate concentration below 10(-6)m. Working at these low substrate concentrations, catalytic activities producing a net efflux of amino acids were demonstrable in vegetative cells in the presence of chloramphenicol, but these exit systems were lost during sporulation. A pool formed by the addition of radioactive algal hydrolysate will exchange with the external medium in vegetative cells but not in sporulating cells. Glutamic acid and alanine comprise at least 60% of the amino acid pool of B. licheniformis A-5, B. subtilis 23, and B. cereus T during all stages of growth and sporulation. The concentrations of the other amino acids in the pool varied extensively, but reflected, in general, the amino acid turnover known to occur during sporulation.  相似文献   

14.
Uptake of labeled amino acids occurred at –4 C to 50 C accompanied by amino acid pool formation and protein synthesis. Maximum assimilation rates of both amino acids occurred at a temperature at which growth of this yeast was inhibited. Over a wide range of temperature the organism took up more exogenous lysine than glutamic acid, even though glutamic acid was present in the cellular protein in greater quantities. At 25 C the uptake and incorporation rates of glutamic acid was significantly higher than at 3 C; however, the size of the glutamic acid pools, at these two temperatures, appeared to be equal and independent of temperature.  相似文献   

15.
Protein synthesis at different stages of yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans was evaluated by following incorporation of radioactive amino acids into the acid-insoluble cellular material. In passing from the early germ-tube formation (60-90 min) to the mature hyphal cell (240-270 min) there was a marked decrease in the capacity for protein synthesis. Apparently, this decrease was not due to a decreased amino acid uptake into the soluble cellular pool or to exhaustion of carbon/energy source in the inducing medium with consequent arrest of growth. Protein synthesis, however, did not decay when amino acids at high concentration were added to the medium fostering the yeast-mycelial transition and this effect was potentiated by glucose. Analysis of the intracellular amino acid pool showed that both germ-tubes and hyphal cells were relatively depleted of several amino acids as compared to the yeast-form cells, whereas in the hyphae there was a higher concentration of glutamic acid/glutamine, the latter being the predominant component. These modulations in amino acid pool composition were not seen when yeasts were converted to hyphae in an amino acid-rich induction medium. This study emphasizes that yeast-form cells of C. albicans may efficiently convert to the mycelial form even under a progressively lowered rate of protein synthesis, and suggests that initiation of hyphal morphogenesis in the presence of N-acetyl-D-glucosamine is somehow separated from cellular growth.  相似文献   

16.
1. The kinetics of radioactive labelling of extra- and intra-cellular amino acid pools and protein of the extensor digitorum longus muscle were studied after incubations with radioactive amino acids in vitro. 2. The results indicated that an extracellular pool could be defined, the contents of which were different from those of the incubation medium. 3. It was concluded that amino acids from the extracellular pool, as defined in this study, were incorporated directly into protein.  相似文献   

17.
Transport of Aromatic Amino Acids by Pseudomonas aeruginosa   总被引:9,自引:5,他引:4       下载免费PDF全文
Kinetic studies of the transport of aromatic amino acids by Pseudomonas aeruginosa revealed the existence of two high-affinity transport systems which recognized the three aromatic amino acids. From competition data and studies on the exchange of preformed aromatic amino acid pools, the first transport system was found to be functional with phenylalanine, tyrosine, and tryptophan (in order of decreasing activity), whereas the second system was active with tryptophan, phenylalanine, and tyrosine. The two systems also transported a number of aromatic amino acid analogues but not other amino acids. Mutants defective in each of the two and in both transport systems were isolated and described. When the amino acids were added at low external concentrations to cells growing logarithmically in glucose minimal medium, the tryptophan pool very quickly became saturated. Under identical conditions, phenylalanine and tyrosine each accumulated in the intracellular pool of P. aeruginosa at a concentration which was 10 times greater than that of tryptophan.  相似文献   

18.
Free amino acids in leaves of inbred corn varieties and of corn hybrids have been studied during development. Although the composition of the amino acid pool in corn hybrids is not fundamentally different from that in inbred varities, there are a few significant differences. Generally hybrids accumulate larger pools than do inbred varities in early stages of development. In hybrids the amino acid pool is used up more rapidly than in inbred varities. At the same time growth of hybrids is more vigorous.  相似文献   

19.
The steady-state growth rate of a marine isolate was related to the concentrations of several carbon and energy source substrates when these substrates limited growth simultaneously in continuous culture. Glucose limitation was characterized by a threshold of 0.21 mg/liter for growth, a half-maximal growth rate at 0.48 mg/liter, U-shaped curves in extractable pool concentration-versus-growth velocity plots, and slow maximal growth rates. Arginine addition reduced the glucose threshold to 0.008 mg/liter, more than doubled the maximal growth rate, and stabilized pool concentrations at low growth rates. Addition of a third substrate, glutamate, caused further reduction of the glucose concentration a steady state. Maximal reduction of the glucose concentration was effected by adding a mixture of 20 amino acids. Steady-state limiting nutrient concentration was dependent on the specific identity of the auxiliary nutrients and on the concentration ratio at which they were supplied. When glucose was supplemented with an equal quantity of an amino acid mixture, the external steady-state glucose remained below 10 mug/liter. When 1 mug of glucose was added to a 2.5-mg/liter amino acid mixture, at least 70% of it was consumed at steady state in spite of the threshold observed. Lack of crossover between metabolic pathways, suggested by the absence of glucose carbon in pool glutamate of arginine-glucose-grown cells, may have been partly responsible for the mixed carbon source stimulation of nutrient accumulation observed. The affinity observed is sufficient to account for normal growth at a total organic substrate concentration of only 0.11 mg/liter when supplied from a suitable mixture.  相似文献   

20.
Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships–in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard-to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号