首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In an effort to determine putative functional relationships between gene expression patterns and drug activity patterns of 60 human cancer cell lines, a novel method was developed to discover local associations within cell line subsets. The association of drug-gene pairs is an explorative way of discovering gene markers that predict clinical tumor sensitivity to therapy. Nine drug-gene networks were discovered, as well as dozens of gene-gene and drug-drug networks. Three drug-gene networks with well studied members were discussed and the literature shows that hypothetical functional relationships exist. Therefore, this method enables the gathering of new information beyond global associations.  相似文献   

2.
3.
Diurnal regulation of scent emission in rose flowers   总被引:3,自引:0,他引:3  
Hendel-Rahmanim K  Masci T  Vainstein A  Weiss D 《Planta》2007,226(6):1491-1499
Previous studies have shown diurnal oscillation of scent emission in rose flowers with a peak during the day (Helsper in Planta 207:88–95, 1998; Picone in Planta 219:468–478, 2004). Here, we studied the regulation of scent production and emission in Rosa hybrida cv. Fragrant Cloud during the daily cycle and focused on two terpenoid compounds, germacrene D and geranyl acetate, whose biosynthetic genes have been characterized by us previously. The emission of geranyl acetate oscillated during the daily light/dark cycle with a peak early in the light period. A similar daily fluctuation was found in the endogenous level of this compound and in the expression of its biosynthetic gene, alcohol acetyl transferase (RhAAT). The rhythmic expression of RhAAT continued under conditions of constant light or darkness, indicating regulation by the endogenous circadian clock. However, the accumulation and emission of geranyl acetate ceased under continuous light. Our results suggest that geranyl acetate production is limited by the level of its substrate geraniol, which is suppressed under constant light conditions. The emission of germacrene D also oscillated during the daily cycle with a peak early in the light period. However, the endogenous level of this compound and the expression of its biosynthetic gene germacrene D synthase (RhGDS) were constant throughout the day. The diurnal oscillation of germacrene D emission ceased under continuous light, suggesting direct regulation by light. Our results demonstrate the complexity of the diurnal regulation of scent emission: although the daily emission of most scent compounds is synchronized, various independently evolved mechanisms control the production, accumulation and release of different volatiles. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Plants emit chemically diverse volatile compounds for attracting pollinators or putting up a chemical defense against herbivores. 2-Phenylethanol (2PE) is one of the abundantly emitted scent compounds in rose flowers. Feeding experiments with l-[2H8]phenylalanine into rose flowers and subsequent analysis using gas chromatography–mass spectrometry analysis revealed the hypothetical biosynthetic intermediates to [2H8]-2PE, and the biochemical and genetic analyses elucidated the principal pathway to [2H8]-2PE. We recently found season-specific 2PE pathway producing [2H7]-2PE from l-[2H8]phenylalanine. This is a unique example where the dominant pathway to a specific compound changes with the seasons. This review focuses on the biosynthesis of floral volatiles and their regulation to adapt to the changes in the environment.  相似文献   

5.
The scent of flowers is a very important trait in ornamental roses in terms of both quantity and quality. In cut roses, scented varieties are a rare exception. Although metabolic profiling has identified more than 500 scent volatiles from rose flowers so far, nothing is known about the inheritance of scent in roses. Therefore, we analysed scent volatiles and molecular markers in diploid segregating populations. We resolved the patterns of inheritance of three volatiles (nerol, neryl acetate and geranyl acetate) into single Mendelian traits, and we mapped these as single or oligogenic traits in the rose genome. Three other volatiles (geraniol, β-citronellol and 2-phenylethanol) displayed quantitative variation in the progeny, and we mapped a total of six QTLs influencing the amounts of these volatiles onto the rose marker map. Because we included known scent related genes and newly generated ESTs for scent volatiles as markers, we were able to link scent related QTLs with putative candidate genes. Our results serve as a starting point for both more detailed analyses of complex scent biosynthetic pathways and the development of markers for marker-assisted breeding of scented rose varieties.  相似文献   

6.
Han Y  Gasic K  Korban SS 《Genetics》2007,176(4):2625-2635
Plant O-methyltransferases (OMTs) play important roles in secondary metabolism. Two clusters of genes coding for caffeic acid OMT (COMT) have been identified in the apple genome. Three genes from one cluster and two genes from another cluster were isolated. These five genes encoding COMT, designated Mdomt1-Mdomt5 (GenBank accession nos. DQ886018-DQ886022), were distinguished by a (CT)(n) microsatellite in the 5'-UTR and two transposon-like sequences present in the promoter region and intron 1, respectively. The transposon-like sequence in intron 1 unambiguously traced the five Mdomt genes in the apple to a common ancestor. The ancestor must have undergone an initial duplication generating two progenitors, and this was followed by further duplication of these progenitors resulting in the two clusters identified in this study. The distal regions of the transposon-like sequences in promoter regions of Mdomt genes are capable of forming palindromic hairpin-like structures. The hairpin formation is likely responsible for nucleotide sequence differences observed in the promoter regions of these genes as it plays a destabilizing role in eukaryotic chromosomes. In addition, the possible mechanism of amplification of Mdomt genes in the apple genome is also discussed.  相似文献   

7.
Plant O-methyltransferases (OMTs) constitute a large family of enzymes that methylate the oxygen atom of a variety of secondary metabolites including phenylpropanoids, flavonoids, and alkaloids. O-Methylation plays a key role in lignin biosynthesis, stress tolerance, and disease resistance in plants. To gain insights into the evolution of the extraordinary diversity of plant O-methyltransferases, and to develop a framework phylogenetic tree for improved prediction of the putative function of newly identified OMT-like gene sequences, we performed a comparative and phylogenetic analysis of 61 biochemically characterized plant OMT protein sequences. The resulting phylogenetic tree revealed two major groups. One of the groups included two sister clades, one comprising the caffeoyl CoA OMTs (CCoA OMTs) that methylate phenolic hydroxyl groups of hydroxycinnamoyl CoA esters, and the other containing the carboxylic acid OMTs that methylate aliphatic carboxyl groups. The other group comprised the remaining OMTs, which act on a diverse group of metabolites including hydroxycinnamic acids, flavonoids, and alkaloids. The results suggest that some OMTs may have undergone convergent evolution, while others show divergent evolution. The high number of unique conserved regions within the CCoA OMTs and carboxylic acid OMTs provide an opportunity to design oligonucleotide primers to selectively amplify and characterize similar OMT genes from many plant species.  相似文献   

8.
The localization and timing of production and emission of scent was studied in different Rosa × hybrida cultivars, focusing on three particular topics. First, it was found that petals represent the major source of scent in R. × hybrida. In heavily scented cultivars, the spectrum and levels of volatiles emitted by the flower broadly correlated with the spectrum and levels of volatiles contained within the petal, throughout petal development. Secondly, analysis of rose cultivars that lacked a detectable scent indicated that the absence of fragrance was due to a reduction in both the biosynthesis and emission of scent volatiles. A cytological study, conducted on scented and non-scented rose cultivars showed that no major difference was visible in the anatomy of the petals either at small magnification in optical sections or in ultrathin sections observed by TEM. In particular, the cuticle of epidermal cells was not thicker in scentless cultivars. Thirdly, using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis was localized in both epidermal layers.  相似文献   

9.
In leguminous plants such as pea (Pisum sativum), alfalfa (Medicago sativa), barrel medic (Medicago truncatula), and chickpea (Cicer arietinum), 4'-O-methylation of isoflavonoid natural products occurs early in the biosynthesis of defense chemicals known as phytoalexins. However, among these four species, only pea catalyzes 3-O-methylation that converts the pterocarpanoid isoflavonoid 6a-hydroxymaackiain to pisatin. In pea, pisatin is important for chemical resistance to the pathogenic fungus Nectria hematococca. While barrel medic does not biosynthesize 6a-hydroxymaackiain, when cell suspension cultures are fed 6a-hydroxymaackiain, they accumulate pisatin. In vitro, hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) from barrel medic exhibits nearly identical steady state kinetic parameters for the 4'-O-methylation of the isoflavonoid intermediate 2,7,4'-trihydroxyisoflavanone and for the 3-O-methylation of the 6a-hydroxymaackiain isoflavonoid-derived pterocarpanoid intermediate found in pea. Protein x-ray crystal structures of HI4'OMT substrate complexes revealed identically bound conformations for the 2S,3R-stereoisomer of 2,7,4'-trihydroxyisoflavanone and the 6aR,11aR-stereoisomer of 6a-hydroxymaackiain. These results suggest how similar conformations intrinsic to seemingly distinct chemical substrates allowed leguminous plants to use homologous enzymes for two different biosynthetic reactions. The three-dimensional similarity of natural small molecules represents one explanation for how plants may rapidly recruit enzymes for new biosynthetic reactions in response to changing physiological and ecological pressures.  相似文献   

10.
11.
The evolution of floral scent and insect chemical communication   总被引:1,自引:0,他引:1  
  相似文献   

12.
Floral scent in bat-pollinated plants: a case of convergent evolution   总被引:3,自引:0,他引:3  
The chemical composition of floral scent in eight bat-pollinated species belonging to six different plant families was investigated. Floral scent was collected by headspace trapping using porous adsorbents and the chemical composition determined by coupled gas chromatography-mass spectrometry. In all species except one the floral scent was found to include sulphur-containing compounds, of which several are reported for the first time in floral scents. Three species contained mushroom-like smelling fatty acid derivatives with a C8-skeleton. Such flowers may be recognized by pollinators as humid environments in otherwise dry surroundings. The presence of similar or chemically closely related sulphur containing compounds in floral scent of bat-pollinated plant species from differing families may represent a case of convergent evolution in scent composition and an adaptation to attract this specific group of pollinators with similar sensory preferences.  相似文献   

13.
14.
15.
Plant O-methyltransferases (OMTs) have important roles in secondary metabolite biosynthesis. Sequencing projects and homology-based cloning strategies yield sequences for proteins with similarities to known OMTs, but the identification of the physiological substrates is not trivial. We investigated with a cDNA cloned from Catharanthus roseus the possibilities for predicting the substrates of OMTs, using the information from previous work and two newly identified motifs that were based on information from the crystal structures of two plant OMTs. The results, confirmed by functional analysis of the recombinant protein, indicated that a careful analysis of the deduced protein sequence can provide clues for predicting the substrates of cloned OMTs.  相似文献   

16.
Two distinct O-methyltransferases in aflatoxin biosynthesis   总被引:3,自引:0,他引:3  
The substances belonging to the sterigmatocystin group bear a close structural relationship to aflatoxins. When demethylsterigmatocystin (DMST) was fed to Aspergillus parasiticus NIAH-26, which endogenously produces neither aflatoxins nor precursors in YES medium, aflatoxins B1 and G1 were produced. When dihydrodemethylsterigmatocystin (DHDMST) was fed to this mutant, aflatoxins B2 and G2 were produced. Results of the cell-free experiment with S-adenosyl-[methyl-3H]methionine showed that first the C-6-OH groups of DMST and DHDMST are methylated to produce sterigmatocystin and dihydrosterigmatocystin (O-methyltransferase I) and then the C-7-OH groups are methylated to produce O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin (DHOMST) (O-methyltransferase II). However, no methyltransferase activity was observed when either OMST, DHOMST, 5,6-dimethoxysterigmatocystin, 5-methoxysterigmatocystin, or sterigmatin was incubated with the cell extract. Treatment of the cell extract with N-ethylmaleimide inhibited O-methyltransferase I activity but not that of O-methyltransferase II. Furthermore, these O-methyltransferases were different in their protein molecules and were involved in both the reactions from DMST to OMST and DHDMST to DHOMST. The reactions described in this paper were not observed when the same mold had been cultured in YEP medium.  相似文献   

17.
Combinatorial chemistry is common place today in chemical synthesis. Virtually thousands of derivatives of a molecule can be achieved by automated systems. The use of biological systems to exploit combinatorial chemistry (combinatorial biochemistry) now has multiple examples in the polyketide field. The modular functional domain structure of polyketide synthases have been recombined through genetic engineering into unnatural constellations in heterologous hosts in order to produce polyketide structures not yet discovered in nature. We present herein an example for a potential type of combinatorial biochemistry in alkaloidal systems using various combinations of Thalictrum tuberosum (meadow rue) O-methyltransferase subunits that result in heterodimeric enzymes with substrate specificities that differ from those of the homodimeric native enzymes.  相似文献   

18.
19.
Two discrete furanocoumarin (5- and 8-)O-methyltransferases and a caffeic acid 3-O-methyl-transferase from cell cultures of Ruta graveoleus L. have been copurified by affinity chromatography on 1,6-diaminohexane agarose (AH-Sepharose 4B) linked with S-adenosyl-L-homocysteine (SAH). The furanocoumarin O-methyltransferases, which transfer a methyl group from S-adenosyl-L-methionine (SAM) to the 5- or 8-hydroxyls of linear furanocoumarins, were not retarded by 5-(3-carboxypropanamido)-xanthotoxin (CPAX) immobilized to AH-Sepharose 4B, but addition of SAM to the irrigant buffer led to complete retardation of both enzymes on this affinity system. An analogous phenomenon was observed for the caffeic acid O-methyltransferase, with a ferulic acid ligand coupled to the same insoluble support. SAH was as effective as SAM in promoting binding of the furanocoumarin O-methyltransferases to CPAX and caffeic acid 3-O-methyltransferase to immobilized ferulic acid, respectively. The strong and specific adsorption of these enzymes was abolished by exclusion of SAM or SAH from the irrigant buffer. It is concluded that the enzymes bind first to SAM or SAH, and that this binding process in turn induces the binding site for their specific phenolic substrates or their analogs. Based on these findings, a compulsory-ordered kinetic mechanism for the action of these O-methyltransferases is postulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号