首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the livers, spleens, kidneys and lungs collected from 24 cynomolgus macaques (Macaca fascicularis) naturally infected with Ebola virus subtype Reston (EBO-R) during the Philippine outbreak in 1996, in order to reveal the histopathologic findings. These macaques showed necrotic hepatocytes with inclusions, slight to massive fibrin deposition in splenic cords, depletion of lymphoid cells in the white pulp of the spleen, and fibrin thrombi in some organs. Immunohistochemical analysis using anti-leukocyte antigen L1 antibody revealed an increase in blood-derived macrophages/monocytes in the livers, kidneys and lungs of EBO-R infected macaques. EBO-R NP antigens were detected in the macrophages/monocytes, endothelial cells and fibroblasts in the liver, spleen, kidney and lung. These results indicate that EBO-R infection is characterized by systemic coagulopathy and an increase in blood-derived macrophages/monocytes in accordance with the EBO-R propagation in macrophages/monocytes.  相似文献   

2.
Martinat C  Mena I  Brahic M 《Journal of virology》2002,76(24):12823-12833
Theiler's virus, a murine picornavirus, causes a persistent infection of macrophage/microglial cells in the central nervous systems of SJL/J mice. Viral replication is restricted in the majority of infected cells, whereas a minority of them contain large amounts of viral RNA and antigens. For the present work, we infected primary cultures of bone marrow monocytes/macrophages from SJL/J mice with Theiler's virus. During the first 10 h postinfection (p.i.), infected monocytes/macrophages were round and covered with filopodia and contained large amounts of viral antigens throughout their cytoplasm. Later on, they were large, flat, and devoid of filopodia and they contained only small amounts of viral antigens distributed in discrete inclusions. These two types of infected cells were very reminiscent of the two types of infected macrophages found in the spinal cords of SJL/J mice. At the peak of virus production, the viral yield per cell was approximately 200 times lower than that for BHK-21 cells. Cell death occurred in the culture during the first 24 h p.i. but not thereafter. No infected cells could be detected after 4 days p.i., and the infection never spread to 100% of the cells. This restriction was unchanged by treating the medium at pH 2 but was abolished by treating it with a neutralizing alpha/beta interferon antiserum, indicating a role for this cytokine in limiting virus expression in monocyte/macrophage cultures. The role of alpha/beta interferon was confirmed by the observation that monocytes/macrophages from IFNA/BR(-/-) mice were fully permissive.  相似文献   

3.
Virus-infected monocytes rarely are detected in the bloodstreams of animals or people infected with immunodeficiency-inducing lentiviruses, yet tissue macrophages are thought to be a major reservoir of virus-infected cells in vivo. We have identified feline immunodeficiency virus (FIV) clinical isolates that are pathogenic in cats and readily transmitted vertically. We report here that five of these FIV isolates are highly monocytotropic in vivo. However, while FIV-infected monocytes were numerous in the blood of experimentally infected cats, viral antigen was not detectable in freshly isolated cells. Only after a short-term (at least 12-h) in vitro monocyte culture were FIV antigens detectable (by immunocytochemical analysis or enzyme-linked immunosorbent assay). In vitro experiments suggested that monocyte adherence provided an important trigger for virus antigen expression. In the blood of cats infected with a prototype monocytotropic isolate (FIV subtype B strain 2542), infected monocytes appeared within 2 weeks, correlating with high blood mononuclear-cell-associated viral titers and CD4 cell depletion. By contrast, infected monocytes could not be detected in the blood of cats infected with a less pathogenic FIV strain (FIV subtype A strain Petaluma). We concluded that some strains of FIV are monocytotropic in vivo. Moreover, this property may relate to virus virulence, vertical transmission, and infection of tissue macrophages.  相似文献   

4.
The pathogenetic mechanisms underlying hemorrhagic fevers are not fully understood, but hemorrhage, activation of coagulation, and shock suggest vascular instability. Here, we demonstrate that Marburg virus (MBG), a filovirus causing a severe form of hemorrhagic fever in humans, replicates in human monocytes/macrophages, resulting in cytolytic infection and release of infectious virus particles. Replication also led to intracellular budding and accumulation of viral particles in vacuoles, thus providing a mechanism by which the virus may escape immune surveillance. Monocytes/macrophages were activated by MBG infection as indicated by tumor necrosis factor alpha (TNF-alpha) release. Supernatants of monocyte/macrophage cultures infected with MBG increased the permeability of cultured human endothelial cell monolayers. The increase in endothelial permeability correlated with the time course of TNF-alpha release and was inhibited by a TNF-alpha specific monoclonal antibody. Furthermore, recombinant TNF-alpha added at concentrations present in supernatants of virus-infected macrophage cultures increased endothelial permeability in the presence of 10 micron H2O2. These results indicate that TNF-alpha plays a critical role in mediating increased permeability, which was identified as a paraendothelial route shown by formation of interendothelial gaps. The combination of viral replication in endothelial cells (H.-J. Schnittler, F. Mahner, D. Drenckhahn, H.-D. Klenk, and H. Feldmann, J. Clin. Invest. 19:1301-1309, 1993) and monocytes/macrophages and the permeability-increasing effect of virus-induced cytokine release provide the first experimental data for a novel concept in the pathogenesis of viral hemorrhagic fever.  相似文献   

5.
In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.  相似文献   

6.
Studies of lentivirus infection in ruminants, nonhuman primates, and humans suggest that virus infection of macrophages plays a central role in the disease process. To investigate whether human immunodeficiency virus type 1 (HIV-1) can infect chimpanzee macrophages, we recovered monocytes from peripheral blood mononuclear cells of HIV-1-negative animals and inoculated these and control human monocytes with a panel of four human-passaged monocytotropic virus strains and one chimpanzee-passaged isolate. HIV-1 infected human monocytes synthesized proviral DNA, viral mRNA, p24 antigen, and progeny virions. In contrast, except for the chimpanzee-passaged HIV-1 isolate, chimpanzee monocytes failed to support HIV-1 replication when cultured under both identical and a variety of other conditions. Proviral DNA was demonstrated only at background levels in these cell cultures by polymerase chain reaction for gag- and env-related sequences. Interestingly, the chimpanzee-passaged HIV-1 isolate did not replicate in human monocytes; viral p24 antigens and progeny virions were not detected. The same monocytotropic panel of HIV-1 strains replicated in both human and chimpanzee CD4+ T lymphoblasts treated with phytohemagglutinin and interleukin-2. The failure of HIV-1 to infect chimpanzee monocytes, which can be overcome by serial in vivo viral passage, occurs through a block early in the viral life cycle.  相似文献   

7.
Monocytes are one of the predominant cell types in the peripheral blood that are infected by human cytomegalovirus (HCMV). Although virus can be detected in these cells in vivo, HCMV replication in cultured monocytes has been unsuccessful. In this study, we demonstrate efficient HCMV replication in cultured monocytes. HCMV permissiveness in these cells was dependent on nonadherent cell-induced stimulation of the monocyte, with subsequent morphological differentiation into macrophages. Approximately 40% of the cells infected by virus were detected by immunofluorescent staining with both immediate-early and late antibodies. In addition, viral plaque assays demonstrated significant productive infection of macrophages. These observations are consistent with the suggestion that the monocyte/macrophage serves as a source of viral amplification and dissemination.  相似文献   

8.
Immunopathogenesis of dengue virus infection   总被引:19,自引:0,他引:19  
Dengue virus infection causes dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), whose pathogeneses are not clearly understood. Current hypotheses of antibody-dependent enhancement, virus virulence, and IFN-gamma/TNFalpha-mediated immunopathogenesis are insufficient to explain clinical manifestations of DHF/DSS such as thrombocytopenia and hemoconcentration. Dengue virus infection induces transient immune aberrant activation of CD4/CD8 ratio inversion and cytokine overproduction, and infection of endothelial cells and hepatocytes causes apoptosis and dysfunction of these cells. The coagulation and fibrinolysis systems are also activated after dengue virus infection. We propose a new hypothesis for the immunopathogenesis for dengue virus infection. The aberrant immune responses not only impair the immune response to clear the virus, but also result in overproduction of cytokines that affect monocytes, endothelial cells, and hepatocytes. Platelets are destroyed by crossreactive anti-platelet autoantibodies. Dengue-virus-induced vasculopathy and coagulopathy must be involved in the pathogenesis of hemorrhage, and the unbalance between coagulation and fibrinolysis activation increases the likelihood of severe hemorrhage in DHF/DSS. Hemostasis is maintained unless the dysregulation of coagulation and fibrinolysis persists. The overproduced IL-6 might play a crucial role in the enhanced production of anti-platelet or anti-endothelial cell autoantibodies, elevated levels of tPA, as well as a deficiency in coagulation. Capillary leakage is triggered by the dengue virus itself or by antibodies to its antigens. This immunopathogenesis of DHF/DSS can account for specific characteristics of clinical, pathologic, and epidemiological observations in dengue virus infection.  相似文献   

9.
The brains of individuals with lentiviral-associated encephalitis contain an abundance of infected and activated macrophages. It has been hypothesized that encephalitis develops when increased numbers of infected monocytes traffic into the central nervous system (CNS) during the end stages of immunosuppression. The relationships between the infection of brain and systemic macrophages and circulating monocytes and the development of lentiviral encephalitis are unknown. We longitudinally examined the extent of monocyte/macrophage infection in blood and lymph nodes of pigtailed macaques that did or did not develop simian immunodeficiency virus encephalitis (SIVE). Compared to levels in macaques that did not develop SIVE, more ex vivo virus production was detected from monocyte-derived macrophages and nonadherent peripheral blood mononuclear cells (PBMCs) from macaques that did develop SIVE. Prior to death, there was an increase in the number of circulating PBMCs following a rise in cerebrospinal fluid viral load in macaques that did develop SIVE but not in nonencephalitic macaques. At necropsy, macaques with SIVE had more infected macrophages in peripheral organs, with the exception of lymph nodes. T cells and NK cells with cytotoxic potential were more abundant in brains with encephalitis; however, T-cell and NK-cell infiltration in SIVE and human immunodeficiency virus encephalitis was more modest than that observed in classical acute herpes simplex virus encephalitis. These findings support the hypothesis that inherent differences in host systemic and CNS monocyte/macrophage viral production are associated with the development of encephalitis.  相似文献   

10.
Human cytomegalovirus (HCMV) pathogenesis is dependent on the hematogenous spread of the virus to host tissue. While data suggest that infected monocytes are required for viral dissemination from the blood to the host organs, infected endothelial cells are also thought to contribute to this key step in viral pathogenesis. We show here that HCMV infection of endothelial cells increased the recruitment and transendothelial migration of monocytes. Infection of endothelial cells promoted the increased surface expression of cell adhesion molecules (intercellular cell adhesion molecule 1, vascular cell adhesion molecule 1, E-selectin, and platelet endothelial cell adhesion molecule 1), which were necessary for the recruitment of na?ve monocytes to the apical surface of the endothelium and for the migration of these monocytes through the endothelial cell layer. As a mechanism to account for the increased monocyte migration, we showed that HCMV infection of endothelial cells increased the permeability of the endothelium. The cellular changes contributing to the increased permeability and increased na?ve monocyte transendothelial migration include the disruption of actin stress fiber formation and the decreased expression of lateral junction proteins (occludin and vascular endothelial cadherin). Finally, we showed that the migrating monocytes were productively infected with the virus, documenting that the virus was transferred to the migrating monocyte during passage through the lateral junctions. Together, our results provide evidence for an active role of the infected endothelium in HCMV dissemination and pathogenesis.  相似文献   

11.
Long-term persistent infection was established in 100% of pigs (n = 19) experimentally infected with African swine fever virus (ASFV). Viral DNA was detected in peripheral blood mononuclear leukocytes (PBML) at greater than 500 days postinfection by a PCR assay. Infectious virus was not, however, isolated from the same PBML samples. In cell fractionation studies of PBML, monocytes/macrophages were found to harbor viral DNA during the persistent phase of infection. This result indicates that monocytes/macrophages are persistently infected with ASFV and that ASFV-swine monocyte/macrophage interactions can result in either lytic or persistent infection.  相似文献   

12.
Productive replication of human immunodeficiency virus type 1 (HIV-1) in brain macrophages and microglia is a critical component of viral neuropathogenesis. However, how virus-macrophage interactions lead to neurological disease remains incompletely understood. Possibly, a differential ability of virus to replicate in brain tissue macrophages versus macrophages in other tissues underlies HIV-1 neurovirulence. To these ends, we established systems for the isolation and propagation of pure populations of human microglia and then analyzed the viral life cycles of divergent HIV-1 strains in these cells and in cultured monocytes by using identical viral inocula and indicator systems. The HIV-1 isolates included those isolated from blood, lung tissue, cerebrospinal fluids (CSF), and brain tissues of infected subjects: HIV-1ADA and HIV-189.6 (from peripheral blood mononuclear cells), HIV-1DJV and HIV-1JR-FL (from brain tissue), HIV-1SF162 (from CSF), and HIV-1BAL (from lung tissue). The synthesis of viral nucleic acids and viral mRNA, cytopathicity, and release of progeny virions were assessed. A significant heterogeneity among macrophage-tropic isolates for infection of monocytes and microglia was demonstrated. Importantly, a complete analysis of the viral life cycle revealed no preferential differences in the abilities of the HIV-1 strains tested to replicate in microglia and/or monocytes. Macrophage tropism likely dictates the abilities of HIV-1 to invade, replicate, and incite disease within its microglial target cells.  相似文献   

13.
Using the murine CMV animal model and the well-established model of Cre-lox-P-mediated green-fluorescence tagging of endothelial cell (EC)-derived mouse CMV to quantify the role of infected ECs in transplantation-associated CMV dissemination (in mice expressing Cre recombinase under the control of either the Tie2 or the Tek promoter selectively expressed in vascular EC-Tie-Cre and Tek-Cre mice), it was shown that EC-derived virus contributed to 50% of the total viral load during primary infection, and there was no preference for dissemination of EC-derived viruses over viruses produced by other cell types. In addition, during secondary viremia, there was only a negligible contribution of EC-derived virus to dissemination to other organs. These results are novel in the methodology employed and are somewhat interesting. However, the data are limited to the mouse model with a short-term follow-up, and the immunodeficient host has not yet been studied. In humans, these conclusions must be taken with caution. First, in primary infection occurring through natural routes, epithelial cells are infected first, then ECs, unless primary infection occurs through blood transfusion, in which case endothelial vascular cells may become infected first. In both cases, the virus transport occurs through the intervention of leukocytes, namely monocytes and polymorphonuclear leukocytes. As monocytes differentiate to macrophages, they become highly susceptible to human CMV replication inside organ tissues, while polymorphonuclear leukocytes are active in virus capturing from infected endothelial vascular cells and transporting to distant sites.  相似文献   

14.
Massive infection of memory CD4 T cells is a hallmark of early simian immunodeficiency virus (SIV) infection, with viral infection peaking at day 10 postinfection (p.i.), when a majority of memory CD4 T cells in mucosal and peripheral tissues are infected. It is not clear if mononuclear cells from the monocyte and macrophage lineages are similarly infected during this early phase of explosive HIV and SIV infections. Here we show that, at day 10 p.i., Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(-) macrophages in the jejunal mucosa were infected, albeit at lower levels than CD4 memory T cells. Interestingly, Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(-) macrophages in peripheral blood, like their mucosal counterparts, were preferentially infected compared to Lin(-) HLA-DR(+) CD11c/123(-) CD13(+) CD14(+) monocytes, suggesting that differentiated macrophages were selectively infected by SIV. CD13(+) CD14(-) macrophages expressed low levels of CD4 compared to CD4 T cells but expressed similar levels of CCR5 as lymphocytes. Interestingly, CD13(+) CD14(-) macrophages expressed Apobec3G at lower levels than CD13(+) CD14(+) monocytes, suggesting that intracellular restriction may contribute to the differential infection of mononuclear subsets. Taken together, our results suggest that CD13(+) CD14(-) macrophages in mucosal and peripheral tissues are preferentially infected very early during the course of SIV infection.  相似文献   

15.
Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in numerous species of wild birds; this is atypical for avian influenza virus (AIV) infections in these avian species, especially for species within the order Anseriformes. Although these infections document the susceptibility of wild birds to H5N1 HPAI viruses and the spillover of these viruses from infected domestic birds to wild birds, it is unknown whether H5N1 HPAI viruses can persist in free-living avian populations. In a previous study, we established that wood ducks (Aix sponsa) are highly susceptible to infection with H5N1 HPAI viruses. To quantify this susceptibility and further evaluate the likelihood of H5N1 HPAI viral maintenance in a wild bird population, we determined the concentration of virus required to produce infection in wood ducks. To accomplish this, 25 wood ducks were inoculated intranasally at 12-16 wk of age with decreasing concentrations of a H5N1 HPAI virus (A/Whooper Swan/Mongolia/244/05 [H5N1]). The median infectious dose and the lethal dose of H5N1 HPAI virus in wood ducks were very low (10(0.95) and 10(1.71) median embryo infectious dose [EID(50)]/ml, respectively) and less than that of chickens (10(2.80) and 10(2.80) EID(50)/ml). These results confirm that wood ducks are highly susceptible to infection with H5N1 HPAI virus. The data from this study, combined with what is known experimentally about H5N1 HPAI virus infection in wood ducks and viral persistence in aquatic environments, suggest that the wood duck would represent a sensitive indicator species for H5N1 HPAI. Results also suggest that the potential for decreased transmission efficiency associated with reduced viral shedding (especially from the cloaca) and a loss of environmental fitness (in water), may be offset by the ability of this virus to be transmitted through a very low infectious dose.  相似文献   

16.
Influenza A virus (IAV) causes central nervous system (CNS) lesions in avian and mammalian species, including humans. However, the mechanism used by IAV to invade the brain has not been determined. In the current work, we used chickens infected with a highly pathogenic avian influenza (HPAI) virus as a model to elucidate the mechanism of entry of IAV into the brain. The permeability of the BBB was evaluated in fifteen-day-old H7N1-infected and non-infected chickens using three different methods: (i) detecting Evans blue (EB) extravasation into the brain, (ii) determining the leakage of the serum protein immunoglobulin Y (IgY) into the brain and (iii) assessing the stability of the tight-junction (TJ) proteins zonula occludens-1 and claudin-1 in the chicken brain at 6, 12, 18, 24, 36 and 48 hours post-inoculation (hpi). The onset of the induced viremia was evaluated by quantitative real time RT-PCR (RT-qPCR) at the same time points. Viral RNA was detected from 18 hpi onward in blood samples, whereas IAV antigen was detected at 24 hpi in brain tissue samples. EB and IgY extravasation and loss of integrity of the TJs associated with the presence of viral antigen was first observed at 36 and 48 hpi in the telencephalic pallium and cerebellum. Our data suggest that the mechanism of entry of the H7N1 HPAI into the brain includes infection of the endothelial cells at early stages (24 hpi) with subsequent disruption of the TJs of the BBB and leakage of virus and serum proteins into the adjacent neuroparenchyma.  相似文献   

17.
Knowledge of the mechanisms of virus dissemination in acute measles is cursory, but cells of the monocyte/macrophage (MM) lineage appear to be early targets. We characterized the dissemination of the Edmonston B vaccine strain of measles virus (MV-Ed) in peripheral blood mononuclear cells (PBMC) of two mouse strains expressing the human MV-Ed receptor CD46 with human-like tissue specificity and efficiency. In one strain the alpha/beta interferon receptor is defective, allowing for efficient MV-Ed systemic spread. In both mouse strains the PBMC most efficiently infected were F4/80-positive MMs, regardless of the inoculation route used. Circulating B lymphocytes and CD4-positive T lymphocytes were infected at lower levels, but no infected CD8-positive T lymphocytes were detected. To elucidate the roles of MMs in infection, we depleted these cells by clodronate liposome treatment in vivo. MV-Ed infection of splenic MM-depleted mice caused strong activation and infection of splenic dendritic cells (DC), followed by enhanced virus replication in the spleen. Similarly, depletion of lung macrophages resulted in strong activation and infection of lung DC. Thus, in MV infections of genetically modified mice, blood monocytes and tissue macrophages provide functions beneficial for both the virus and the host: they support virus replication early after infection, but they also contribute to protecting other immune cells from infection. Human MM may have similar roles in acute measles.  相似文献   

18.
Influenza virus infection accounts for significant morbidity and mortality world-wide. Interactions of the virus with host cells, particularly those of the macrophage lineage, are thought to contribute to various pathological changes associated with poor patient outcome. Development of new strategies to treat disease therefore requires a detailed understanding of the impact of virus infection upon cellular responses. Here we report that human blood-derived monocytes could be readily infected with the H3N2 influenza virus A/Udorn/72 (Udorn), irrespective of their phenotype (CD14(++)/CD16(-), CD14(++)/CD16(+) or CD14(dim)CD16(++)), as determined by multi-colour flow cytometry for viral haemagglutinin (HA) expression and cell surface markers 8-16 hours post infection. Monocytes are relatively resistant to influenza-induced cell death early in infection, as approximately 20% of cells showed influenza-induced caspase-dependent apoptosis. Infection of monocytes with Udorn also induced the release of IL-6, IL-8, TNFα and IP-10, suggesting that NS1 protein of Udorn does not (effectively) inhibit this host defence response in human monocytes. Comparative analysis of human monocyte-derived macrophages (Mph) demonstrated greater susceptibility to human influenza virus than monocytes, with the majority of both pro-inflammatory Mph1 and anti-inflammatory/regulatory Mph2 cells expressing viral HA after infection with Udorn. Influenza infection of macrophages also induced cytokine and chemokine production. However, both Mph1 and Mph2 phenotypes released comparable amounts of TNFα, IL-12p40 and IP-10 after infection with H3N2, in marked contrast to differential responses to LPS-stimulation. In addition, we found that influenza virus infection augmented the capacity of poorly phagocytic Mph1 cells to phagocytose apoptotic cells by a mechanism that was independent of either IL-10 or the Mer receptor tyrosine kinase/Protein S pathway. In summary, our data reveal that influenza virus infection of human macrophages causes functional alterations that may impact on the process of resolution of inflammation, with implications for viral clearance and lung pathology.  相似文献   

19.
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.  相似文献   

20.
The lentiviruses of sheep, goats, and horses cause chronic multiorgan disease in which macrophages are highly permissive for viral replication. Monocytes, which mature into macrophages, are thought to be latently infected with lentivirus, but the extent to which other leukocytes are infected is unknown. Dendritic cells have not been studied separately from monocytes and T-cell subsets have not been examined in previous attempts to identify infected cells in peripheral blood mononuclear cells (PBMC). We found no evidence of T-cell tropism using an animal-passaged, pathogenic ovine lentivirus. Phytohemagglutinin-stimulated infectious PBMC produced 20-fold less virus than differentiated macrophages, and cocultivation of infectious PBMC with fresh, uninfected phytohemagglutinin blasts did not facilitate virus replication. Furthermore, central lymph cells, the best in vivo source of purified lymphocytes, lacked virus and did not yield virus upon in vitro cultivation. In contrast, cultivated blood-derived macrophages were highly permissive for viral replication. To identify the latently infected PBMC, PBMC from infected sheep were selectively depleted of monocytes and B cells by passage over nylon wool and then of nonadherent cells bearing CD4, CD8, T19, gamma delta T-cell receptor, CD45RA, or major histocompatibility complex class II antigens by panning. Removal of adherent monocytes and B cells or of adherent cells and the three major T-cell subsets (CD4+, CD8+, T19+) did not decrease the infectivity of PBMC. The richest sources of infected cells in fresh PBMC were CD45RA+ and major histocompatibility complex class II+ nonadherent cells, which are three characteristics of dendritic cells. Thus, the dendritic cell, and not the monocyte or the CD4+ cell, is probably the predominant infected cell type in blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号