首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ionophore A23187-mediated net influx of Ca2+ in ATP-depleted human red cells was studied as a function of the pH and the proton concentration gradient across the membranes. Utilizing the Ca2+-induced increase in K+ conductance of the cell membranes, various CCCP-mediated proton gradients were raised across the membranes of cells suspended in unbuffered salt solutions with different K+ concentrations. In ionophore-mediated equilibrium the concentration ratios of ionized Ca between ATP-depleted, DIDS-treated cells and their suspension medium were equal to the concentration ratios of protons raised to the second power. With no proton concentration gradient across the membranes the net influxes of Ca2+ as a function of pH resembled a titration curve of a weak acid, with half maximal net influx at pH 7.3, at 100 microM extracellular Ca2+. With cellular pH fixed at various values, the net influx of Ca2+ was determined as a function of the proton concentration gradient. A linear relationship between the logarithm of net influx and the difference between extracellular and cellular pH was found at all cellular pH values tested, but the proton concentration gradient acceleration was a function of the cellular pH. Accelerations between 10- and 40- times per unit delta pH were found and net effluxes were correspondingly decreased. The results are discussed in relation to present models of the mechanism of ionophore A23187-mediated Ca2+ transport. The importance of the proton concentration gradient dependency is discussed in relation to the induced oscillations in K+-conductance of human red cell membranes previously reported (Vestergaard-Bogind and Bennekou (1982) Biochim. Biophys. Acta 688, 37-44).  相似文献   

2.
Ca2+ transients and Mn2+ entry in human neutrophils induced by thapsigargin   总被引:7,自引:0,他引:7  
Human neutrophils, preloaded with the fluorescent probe, Fura-2, were exposed to Ca2+-releasing agents. The monitored traces of fluorescence were transformed by computer to cytosolic Ca2+ concentration ([ Ca2+]i). Due to quenching of Fura-2, the addition of Mn2+ enabled us to compute the cytosolic concentration of total manganese ([Mn]i). The agents used were the novel Ca2+-mobilizing agent, thapsigargin (Tg), the chemotactic peptide, formyl-methionyl-leucyl-phenylalanine (FMLP), and the divalent cation ionophore, A23187. The agents caused transient rises of [Ca2+]i and monotonous rises of [Mn]i, suggesting influx but no efflux of Mn2+. The rise time of [Ca2+]i and the time constants and magnitude of the apparent Mn2+ influx were strongly dependent on the sequence of addition of the agonist and Ca2+. Contrary to FMLP, Tg needed several minutes to exert its full effect on the rise of [Ca2+]i and on the influx of Mn2+, the latter being dependent on two phases, activation and partial inactivation. Pretreatment with phorbol 12-myristate 13-acetate (PMA) inhibited the responses of Tg, FMLP and A23187. For comparison, human red blood cells were tested. Contrary to A23187, Tg did not induce Ca2+ uptake in ATP-depleted red cells but increased the Ca2+ pump flux in intact red cells by 10%. The experimental data and computer simulations of the granulocyte data suggest that time-dependent changes of both passive Ca2+ flux into the cytosol and Ca2+ flux of the plasma membrane pump are involved in the transient [Ca2+]i response.  相似文献   

3.
The free calcium ion concentration, [Ca2+]i, in the cytoplasmic matrix of quin2-loaded neutrophil leucocytes increases rapidly after addition of concanavalin A. This increase is effectively abolished by a short (3 min) preincubation with 10 nM-TPA (12-O-tetradecanoylphorbol 13-acetate). TPA also inhibits a [Ca2+]i rise of similar magnitude induced by low concentrations (10 nM) of calcium ionophore A23187, suggesting that phorbol ester does not interfere with a physiological influx mechanism. To investigate the effects of TPA further, cells were depleted of Ca2+ during quin2 loading and then re-equilibrated with normal extracellular [Ca2+]. The return to a stable [Ca2+]i value was preceded by a transient overshoot in [Ca2+]i, implying delayed activation of an efflux mechanism by rising [Ca2+]i. TPA abolished the transient, suggesting preactivation by TPA of the efflux mechanism before Ca2+ influx. TPA also stimulates net Ca2+ efflux from neutrophils and neutrophil cytoplasts. These observations are consistent with the thesis that TPA stimulates a Ca2+-efflux mechanism in these cells.  相似文献   

4.
J W Lee  G A Vidaver 《Cell calcium》1984,5(6):501-524
Cells were subjected to a range of 45Ca2+ influx loads with A23187. We measured cell 45Ca2+ with time and A23187 dose, and the apparent 45Ca2+ influxes (identical to "J(in,app)") at Ca2+ steady state. We also measured endogeneous exchangeable and total cell Ca2+, which were 50 and 17-220 microM respectively. The effects of A23187 and Ca2+ on cell ATP, swelling, net Cl- permeability, and cell morphology were measured. These were modest and do not affect our conclusions. J(in,app) congruent to 3 X 10(-4) [A23187]2.9 X [Ca2+(o)]mumoles/l X min with 92-552 microM [Ca2+(o)] (identical to external Ca2+ concentration) and 0-7 microM A23187. J(in,app) was increased an order of magnitude by vanadate and is probably much less than the true influx. The least unlikely explanation found for the high [A23187] exponent, 2.9, was that most of the Ca2+ crossing the membrane is expelled by the pump before it can move deeper into the cell. Calcium pumping increased rapidly in response to increased influx, but the steady state cell 45Ca2+ was approximately proportional to J(in,app) rather than approximately constant between 10 and 120 mumoles/l X min with 184 microM [Ca2+(o)]. This is not the result expected from a simple feedback mechanism. At high A23187 doses the pump appears fully activated resulting in a linear relation between cell/medium 45Ca2+ and [A23187]-2. From the plot we calculated alpha identical to free/total exchangeable Ca2+ = 0.38 +/- 0.08 (n = 3) and a maximum pump rate, "Pmax" = 78 mumole/l X min. Pmax is underestimated insofar as J(in,app) is less than the true influx.  相似文献   

5.
Ionophore A23187-mediated net influx of Ca2+ in ATP-depleted human red cells was studied as a function of the pH and the proton concentration gradient across the membranes. Utilizing the Ca2+-induced increase in K+ conductance of the cell membranes, various CCCP-mediated proton gradients were raised across the membranes of cells suspended in unbuffered salt solutions with different K+ concentrations. In ionophore-mediated equilibrium the concentration ratios of ionized Ca between ATP-depleted, DIDS-treated cells and their suspension medium were equal to the concentration ratios of protons raised to the second power. With no proton concentration gradient across the membranes the net influxes of Ca2+ as a function of pH resembled a titration curve of a weak acid, with half maximal net influx at pH 7.3, at 100 μM extracellular Ca2+. With cellular pH fixed at various values, the net influx of Ca2+ was determined as a function of the proton concentration gradient. A linear relationship between the logarithm of net influx and the difference between extracellular and cellular pH was found at all cellular pH values tested, but the proton concentration gradient acceleration was a function of the cellular pH. Accelerations between 10- and 40- times per unit ΔpH were found and net effluxes were correspondingly decreased. The results are discussed in relation to present models of the mechanism of ionophore A23187-mediated Ca2+ transport. The importance of the proton concentration gradient dependency is discussed in relation to the induced oscillations in K+-conductance of human red cell membranes previously reported (Vestergaard-Bogind and Bennekou (1982) Biochim. Biophys. Acta 688, 37ndash;44).  相似文献   

6.
Matrix free Ca2+ in isolated chromaffin vesicles   总被引:3,自引:0,他引:3  
D Bulenda  M Gratzl 《Biochemistry》1985,24(26):7760-7765
Isolated secretory vesicles from bovine adrenal medulla contain 80 nmol of Ca2+ and 25 nmol of Mg2+ per milligram of protein. As determined with a Ca2+-selective electrode, a further accumulation of about 160 nmol of Ca2+/mg of protein can be attained upon addition of the Ca2+ ionophore A23187. During this process protons are released from the vesicles, in exchange for Ca2+ ions, as indicated by the decrease of the pH in the incubation medium or the release of 9-aminoacridine previously taken up by the vesicles. Intravesicular Mg2+ is not released from the vesicles by A23187, as determined by atomic emission spectroscopy. In the presence of NH4Cl, which causes the collapse of the secretory vesicle transmembrane proton gradient (delta pH), Ca2+ uptake decreases. Under these conditions A23187-mediated influx of Ca2+ and efflux of H+ cease at Ca2+ concentrations of about 4 microM. Below this concentration Ca2+ is even released from the vesicles. At the Ca2+ concentration at which no net flux of ions occurs the intravesicular matrix free Ca2+ equals the extravesicular free Ca2+. In the absence of NH4Cl we determined an intravesicular pH of 6.2. Under these conditions the Ca2+ influx ceases around 0.15 microM. From this value and the known pH across the vesicular membrane an intravesicular matrix free Ca2+ concentration of about 24 microM was calculated. This is within the same order of magnitude as the concentration of free Ca2+ in the vesicles determined in the presence of NH4Cl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Influx of 45Ca2+ into Saccharomyces cerevisiae was measured under experimental conditions which enabled measurements of initial rate of transport across the plasma membrane, without interference by the vacuolar Ca2+ transport system. Addition of glucose or glycerol to the cells, after pre-incubation in glucose-free medium for 5 min, caused a rapid, transient increase in 45Ca2+ influx, reaching a peak at 3-5 min after addition of substrate. Ethanol, or glycerol added with antimycin A, had no effect on 45Ca2+ influx. We have shown previously that this increase is not mediated by an effect of the substrates on intracellular ATP levels. Changes in membrane potential accounted for only a part of the glucose-stimulated 45Ca2+ influx. The roles of intracellular acidification and changes in cellular cAMP in mediating the effects of glucose on 45Ca2+ influx were examined. After a short preincubation in glucose-free medium addition of glucose caused a decrease in the intracellular pH, [pH]i, which reached a minimum value after 3 min. A transient increase in the cellular cAMP level was also observed. Addition of glycerol also caused intracellular acidification, but ethanol or glycerol added with antimycin A had no effect on [pH]i. Artificial intracellular acidification induced by exposure to isobutyric acid or to CCCP caused a transient rise in Ca2+ influx but the extent of the increase was smaller than that caused by glucose, and the time-course was different. We conclude that intracellular acidification may be responsible for part of the glucose stimulation of Ca2+ influx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The present studies were performed in order to measure the effects of cyclic GMP (cGMP) on the regulation of free cytosolic calcium [( Ca2+]i) in the pancreatic acinar cell. In guinea pig dispersed pancreatic acini the findings demonstrated that the Ca2+ ionophore, Br A23187, caused a sustained increase in [Ca2+]i in the presence of 3 mM CaCl2 in the media and a transient 20 fold rise in cellular cGMP followed by a sustained 3-4 fold rise in cellular cGMP. Increasing cellular cGMP with nitroprusside, hydroxylamine or dibutyryl cGMP had no effect on resting [Ca2+]i. However, these agents attenuated the increase in [Ca2+]i resulting from Br A23187-induced Ca2+ influx. Nitroprusside also attenuated the carbachol-induced sustained rise in [Ca2+]i that resulted from Ca2+ influx. The nitroprusside effect on carbachol-stimulated acini occurred without decreasing Ca2+ influx across the plasma membrane or alteration in the mobilization of Ca2+ from the intracellular agonist-sensitive pool. Inhibition of the increase in cellular cGMP caused by Br A23187 by the guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), resulted in augmentation of the increase in [Ca2+]i. This augmentation was reversed with dibutyryl cGMP. These results indicated that cGMP regulated [Ca2+]i in the pancreatic acinar cell. The mechanism involves the removal of Ca2+ from the cytoplasm.  相似文献   

9.
Phenylephrine is known to stimulate translocation of protein kinase C in rat pinealocytes (Sugden, D., Vanecek, J., Klein, D.C., Thomas, T.P., and Anderson, W. B. (1985) Nature 314, 359-361). In the present study, the receptor mediating this effect was found to belong to the alpha 1-adrenoceptor subclass. Activation of this receptor is also known to produce a sustained increase in [Ca2+]i by increasing net influx (Sugden, A. L., Sugden, D., and Klein, D. C. (1985) J. Biol. Chem. 261, 11608-11612), which points to the possible importance of Ca2+ influx in the subcellular redistribution (activation) of protein kinase C in intact cells. This possibility was investigated by reducing extracellular Ca2+ ((Ca2+]o) with EGTA or by inhibiting Ca2+ influx with inorganic Ca2+ blockers. These treatments reduced alpha 1-adrenoceptor-mediated translocation of protein kinase C. This suggested that elevation of Ca2+ influx alone triggers activation of protein kinase C. In support of this, it was found that treatments which elevate Ca2+ influx, including increased extracellular K+ and addition of the Ca2+ ionophore A23187, cause redistribution of protein kinase C. The effect of K+ was blocked by nifedipine and that of A23187 by EGTA, indicating that effects of these agents are Ca2+-dependent. The possible role of phospholipase C activation in these effects was examined by measuring the formation of [3H]diacylglycerol by cells labeled with [3H]arachidonic acid. Although [3H]diacylglycerol formation was easily detected in the presence or absence of an effective concentration of an inhibitor of diacylglycerol kinase, none of the agents which cause rapid translocation of protein kinase C were found to cause a rapid increase in the generation of [3H]diacylglycerol. These findings establish that an increase in Ca2+ influx is sufficient to trigger translocation of protein kinase C. In addition, we found that a very close correlation exists between translocation of protein kinase C by phenylephrine, K+, and A23187 and their ability to potentiate beta-adrenergic stimulation of cAMP and cGMP accumulation. This provides strong support to the proposal that translocation of protein kinase C is required for potentiation of beta-adrenergic stimulation of pinealocyte cAMP and cGMP accumulation.  相似文献   

10.
Phosphatidic acid-induced calcium mobilization in osteoblasts   总被引:1,自引:0,他引:1  
Phosphatidic acid (PA) evoked a transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i) in osteoblasts isolated from neonatal mouse calvaria. This increase was observed in both low (below 150 microM) and high (1.26 mM) Ca2+-containing medium. In contrast, other phospholipids, such as phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol, failed to increase [Ca2+]i in osteoblasts. In high Ca2+-containing medium, A23187 also increased [Ca2+]i in the cells, but the mode of the change was different from that in the case of PA. These results suggest that PA may induce Ca2+-mediated cellular responses through Ca2+ release from intracellular stores in osteoblasts.  相似文献   

11.
The role of Ca2+ in stimulation of H+ gastric secretion by cAMP-dependent and -independent secretagogues was studied in isolated rabbit glands using Ca2+ ionophore, A23187, and an intracellular Ca2+ chelator (BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) incorporated as its acetoxymethyl ester (BAPTA-AM). Acetylcholine (ACh), tetragastrin (TG), histamine and forskolin induced a transitory increase of intracellular Ca2+ concentration, [Ca2+]i, measured in gastric glands loaded with Ca2+-sensitive dye fura-2, and provoked an acid secretory response evaluated with aminopyrine accumulation ratio (AP ratio). The Ca2+-ionophore A23187 also induced an increase in [Ca2+]i and in AP ratio. cAMP-dependent secretagogues were more potent stimulants of acid secretion than cAMP-independent secretagogues. cAMP analogue, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-BR-cAMP) induced an increase in AP ratio without modifying [Ca2+]i. BAPTA-AM (5-25 microM) induced a transient decrease of resting [Ca2+]i which returned to basal level due to extracellular Ca2+ entry. Increases in [Ca2+]i produced by ACh and TG were abolished by BAPTA and those produced by Ca2+ ionophore A23187 were partially buffered. BAPTA inhibited in a dose-dependent manner H+ secretion induced by cholinergic and gastrinergic stimulants in the presence of cimetidine. A23187 increased the AP ratio to values similar to those obtained with ACh or TG and was not inhibited by BAPTA. BAPTA partially inhibited (40%) the increase in AP ratio induced by forskolin and histamine inspite of the complete inhibition of the Ca2+ response. BAPTA did not inhibit the response to 8-BR-cAMP. BAPTA inhibition of forskolin stimulation was reversed by A23187 and the response was potentiated. These results indicate that ACh and TG response are completely dependent on an increase of [Ca2+]i. The response to cAMP-dependent agonists histamine and forskolin depend both on Ca2+ and cAMP. For forskolin stimulation the response may be the result of a potentiation between Ca2+ and cAMP.  相似文献   

12.
Peptides containing Arg-Gly-Asp (RGD) immobilized on beads bind to integrins and trigger biphasic, transient increases in intracellular free Ca2+ ([Ca2+]i) in Madin-Darby canine kidney epithelial cells. The [Ca2+]i increase participates in feedback regulation of integrin-mediated adhesion in these cells. We examined influx pathways and inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ store release as possible sources of the [Ca2+]i rise. The RGD-induced [Ca2+]i response requires external Ca2+ (threshold approximately 150 microM), and its magnitude is proportional to extracellular calcium. RGD-induced transients were attenuated by Ca2+ channel inhibitors (Ni2+ and carboxy-amidotriazole) or by plasma membrane depolarization, indicating that Ca2+ influx contributes to the response. Loading cells with heparin reduced the size of RGD-induced [Ca2+]i transients, indicating that IP3-mediated release of Ca2+ from stores may also contribute to the RGD response. Depletion of Ca2+ stores with thapsigargin activated Ni(2+)-sensitive Ca2+ influx that might also be expected to occur after IP3-mediated depletion of stored Ca2-. However, RGD elicited a Ni(2+)-sensitive Ca2+ influx even after pretreatment with thapsigargin, indicating that Ca2+ influx is controlled by a mechanism independent of IP3-mediated store depletion. We conclude that RGD-induced [Ca2+]i transients in Madin-Darby canine kidney cells result primarily from the combination of two distinct mechanisms: 1) IP3-mediated release of intracellular stores, and 2) activation of a Ca2+ influx pathway regulated independently of IP3 and Ca2+ store release. Because Ni2+ and carboxy-amidotriazole inhibited adhesion, whereas store depletion with thapsigargin had little effect, we suggest that the Ca2+ influx mechanism is most important for feedback regulation of integrin-mediated adhesion by increased [Ca2+]i.  相似文献   

13.
Sensitization of rat hepatocytes to hyperthermia by calcium   总被引:2,自引:0,他引:2  
The viability of isolated rat hepatocytes, as assayed by trypan blue exclusion, decreases in a dose-dependent fashion during exposure to hyperthermia (D0 [43 degrees C] = 105 +/- 10 min, D0 [45 degrees C] = 24 +/- 4 min). Hyperthermic sensitivity varies as a function of extracellular Ca2+ concentration in a biphasic manner; optimum survival occurs at 1-5 mM Ca2+, with sensitization in the absence of Ca+ and increasing sensitization at Ca2+ concentrations greater than 10 mM. Ca influx does not correlate well with loss of viability for hepatocytes in 4 mM extracellular Ca2+; influx does not occur until viability decreases to less than 1%. Under sensitizing conditions, Ca2+ influx proceeds loss of viability. Influx begins within 15 min at 45 degrees C in 15 mM Ca2+, and the ionophore A23187 is a potent hyperthermic sensitizer in the presence of extracellular Ca2+. Thus, Ca2+ influx, whether caused by high extracellular Ca2+ or A23187, increases cellular damage caused by supraoptimal temperatures, although some Ca2+ is necessary for maximum resistance, probably because of stabilization of Ca2+ binding proteins against thermal denaturation or possibly to Ca2+-induced decrease in lipid fluidity.  相似文献   

14.
In the present study we have investigated the effect of changes in the concentration of cytosolic free Ca2+ ([Ca2+]i) on the deacetylation-reacylation of PAF-acether (alkylacetylglycerophosphocholine, alkylacetyl-GPC) by rabbit platelets. Washed platelets were incubated with alkyl[3H]acetyl-GPC ([3H]acetyl-PAF) or [3H]alkylacetyl-GPC ([3H]alkyl-PAF) and [Ca2+]i was subsequently elevated by the addition of the ionophore A23187 or thrombin. The catabolism of PAF-acether was studied by measuring the release of [3H]acetate or the formation of [3H]alkylacyl-GPC. The ionophore inhibited the release of [3H]acetate and the formation of [3H]alkylacyl-GPC with no accumulation of lyso-[3H]PAF, indicating that the deacetylation of PAF-acether was blocked. The effect of ionophore on the deacetylation of PAF-acether was parallel with the increase of [Ca2+]i and could be reversed by the addition of EGTA. In contrast with the prolonged inhibition evoked by ionophore, thrombin, which induced a transient elevation of [Ca2+]i, merely delayed the deacetylation of PAF-acether. Since intact platelets failed to convert exogenous lyso-PAF, the effect of Ca2+ on its acylation was investigated by using platelet homogenates. These experiments showed that the acylation of lyso-PAF was inhibited by the exogenously added Ca2+, with a maximum effect at 1 mM. When the formation of endogenous lyso-PAF from the labelled pool of alkylacyl-GPC was examined, a prolonged increase in the concentration of lyso-PAF with a parallel and equally prolonged decrease in the cellular level of alkylacyl-GPC were observed after the addition of ionophore to intact platelets. The addition of EGTA reversed the effect of ionophore, thus permitting reacylation of lyso-PAF. In contrast, only a transient change in the level of lyso-PAF and alkylacyl-GPC was evoked by the addition of thrombin. Therefore we conclude that the inhibitory effect of Ca2+ on the deacetylation-reacylation of PAF-acether may have an important role in the regulation of its biosynthesis.  相似文献   

15.
Changes in intracellular free Ca2+ concentration [( Ca2+]i) were used to study the interaction between mitogens in Swiss 3T3 fibroblasts. Platelet-derived growth factor (PDGF) produced an increase in [Ca2+]i and markedly decreased the increases in [Ca2+]i caused by subsequent addition of bradykinin and vasopressin. If the order of the additions was reversed the [Ca2+]i response to PDGF was not inhibited by bradykinin or vasopressin. Inhibition of protein kinase C by staurosporine or chronic treatment of the cells with phorbol 12-myristate 13-acetate prevented the inhibitory effect of PDGF on the [Ca2+]i response to vasopressin but not bradykinin. PDGF did not decrease the receptor binding of bradykinin and produced only a small decrease in the receptor binding of vasopressin. PDGF decreased the rise in [Ca2+]i caused by the Ca2+ ionophores 4-bromo-A23187 and ionomycin and by a membrane perturbing ether lipid, 1-octadecyl-2-methyl-rac-glycero-3-phosphocholine, both in the presence and absence of external Ca2+. There was no change in cell 45Ca2+ influx caused by PDGF, vasopressin, or bradykinin. 45Ca2+ efflux from cells exposed to PDGF and vasopressin mirrored the changes in [Ca2+]i caused by the agents, that is, PDGF added after vasopressin produced a further increase in 45Ca2+ efflux but vasopressin did not increase 45Ca2+ efflux after PDGF. PDGF but not vasopressin caused an increase in the uptake of 45Ca2+ into an inositol 1,4,5-trisphosphate-insensitive non-mitochondrial store in permeabilized cells. The results suggest that the decreased [Ca2+]i response to mitogens after PDGF represents an action of PDGF at a point beyond the release of intracellular Ca2+ and the influx of external Ca2+, caused by an increase in the rate of removal of cytoplasmic free Ca2+. This increased removal of cytoplasmic Ca2+ by PDGF is not due to the increased export of Ca2+ from the cell but results from increased Ca2+ uptake into non-mitochondrial stores.  相似文献   

16.
We invented a simultaneous measuring instrument of fluorescence and chemiluminescence, realizing the analysis of chronological correlation between change in intracellular Ca2+ concentration ([Ca2+]i) and superoxide generation. A human monocytic cell line, THP-1, differentiated to be neutrophil-like cells generated superoxide with increase in intracellular Ca2+ concentration when stimulated with formyl-methionyl-leucyl-phenylalanine (fMLP) whereas PMA, phorbol ester-stimulated superoxide response occurred without change in [Ca2+]i. The cells treated with TMB-8, an intracellular Ca2+ antagonist, generated superoxide rapidly as well as transiently with transient [Ca2+]i elevation after stimulation with fMLP, whereas EGTA-treated cells generated superoxide slowly as well as persistently with transient [Ca2+]i elevation after the stimulation. These results suggest that the rapid and transient contents of superoxide generation are specific for Ca2+ influx from the extracellular domain. Verapamil, voltage-dependent Ca2+ channel blocker, dose-dependently inhibited fMLP-stimulated extracellular Ca2+ influx and superoxide generation without affecting PMA-stimulated superoxide generation. Other channel blockers tested, nifedipine and diltiazem, similarly inhibited these fMLP-stimulated responses. Numerical analysis of the values of the response curves elucidated that TMB-8 or the channel blocker reveals or eliminates the same contents of superoxide generation by the antagonism of intracellular Ca2+ release or extracellular Ca2+ influx, respectively. Taking these results together, the characteristic extracellular Ca2+ influx essential for superoxide generation was first revealed by the simultaneous measurement of superoxide generation and change in [Ca2+]i.  相似文献   

17.
B Foder  O Scharff 《Cell calcium》1992,13(9):581-591
Resealed human red cell ghosts were loaded with Fura-2, ATP, Mg2+, and either calmodulin (CaM) or, to prevent CaM activation of the Ca2+ pump, a synthetic peptide that antagonized endogenous CaM (an analogue of the CaM binding domain of protein kinase II, referred to as 'antiCaM'). The ghosts reduced the cytosolic concentration of ionized calcium ([Ca2+]i) to 193 +/- 60 nM (SD, n = 15) in a medium containing 1 mM Ca2+ and to 30 +/- 27 nM (SD, n = 62) in a medium without Ca2+ addition. Without ATP, i.e. no fuelling of the Ca2+ pump, the [Ca2+]i remained high (approx. 5 microM or higher). The simultaneous addition of the ionophore A23187 and Ca2+ rapidly increased the Ca2+ influx, which in the CaM loaded ghosts caused a solitary spike of [Ca2+]i, reaching maximum around 2 microM within 24 +/- 6 s (SD, n = 40). On the contrary, in the ghosts loaded with antiCaM, the addition of A23187 with Ca2+ raised [Ca2+]i during the first 2 min to a high level (2-4 microM) with no preceding spike. Pre-incubation of CaM-ghosts with Ca2+ diminished the height of the Ca2+ spike, and treatment with trypsin even removed the Ca2+ spike. The trypsin treatment activated the Ca2+ pump prior to the rise of [Ca2+]i, making the time-consuming CaM activation unnecessary. In conclusion, the Ca2+ spiking is dependent on a delayed CaM activation of the plasma membrane Ca2+ pump in response to a rapid increase of Ca2+ influx.  相似文献   

18.
We measured changes of cytosolic Ca2+ concentration during chondrogenesis, which occurs in high-density cultures (HDC) of chondrifying chicken mesenchymal cells. A significant, transient elevation was detected in Fura-2-loaded cells on day 3 of culturing, when majority of chondrogenic cells of HDC become differentiated. This 140 nM peak of cytosolic Ca2+ concentration is a result of increased Ca-influx and is indispensable to proper chondrogenesis, because addition of 0.8mM EGTA to culture medium on day 2 or 3 significantly decreased the intracellular Ca2+ concentration abolishing the Ca2+-peak of day 3 and inhibited cartilage formation. Uncontrolled Ca2+ influx evoked by a Ca2+ ionophore exerted dual effects on chondrogenesis in a concentration-dependent manner; 0.1mg/L A23187 increased, whereas 5 mg/L A23187 almost totally blocked cartilage formation. Intracellular Ca-stores seemed not to have any significant participation in the regulation of changes of cytosolic Ca2+ concentration of chondrifying cells. Activity of Ca-calmodulin-dependent protein phosphatase, calcineurin responded to changes of intracellular Ca2+ concentration induced by EGTA or A23187 in a differentiation stage-dependent manner. Since inhibition of calcineurin with cyclosporine A eliminated the peak in the cytosolic Ca2+ concentration, an active regulatory role of calcineurin on Ca2+ influx of chondrifying cells can be supposed.  相似文献   

19.
Prostacyclin (PGI2) generation of cultured human vascular endothelial cells (VEC) was observed coincidentally with the increase of 45Ca net influx. Ca ionophore A23187 enhanced not only PGI2 generation and 45Ca net influx but also 45Ca efflux. PGI2 generation was completely abolished by the pretreatment with Ca++ immobilizer, TMB-8. A Na+-K+ ATPase inhibitor, ouabain increased 45Ca net influx, but decreased 45Ca efflux, and enhanced PGI2 generation. These observation indicate that PGI2 generation of VEC may be regulated by not only Ca++ but also Na+, and it was suggested that enhanced PGI2 generation by ouabain might be derived from the increased cytosolic Ca++concentration by the decreased Ca++ efflux, and it was considered to be originated from the suppression of Na+-Ca++ exchange systems by the increased intracellular Na+ concentration via inhibition of Na+-K+ ATPase activity by ouabain. Enhancement of PGI2 generation of VEC by the increased ouabain like substances (OLS) in hypertension is suspected to be beneficial on the maintenance of vascular homeostasis.  相似文献   

20.
The influence of the Ca2+ ionophores, ionomycin and A23187 upon the incorporation of [35S]methionine into proteins of cultured chicken pectoralis muscle was studied during differentiation of myoblasts into multinucleated myotubes. Fusion was reversibly arrested by growing cells in low-calcium media from the time of plating. Exposure of normal and fusion blocked cultures to 10-6-10-5 M ionomycin or A23187 for 2-6 h on the second to fourth day of growth, resulted in a selective increase in the incorporation of [35S]methionine into two proteins of about 100 000 and 80 000 dalton. When 10-5 M ionomycin or A23187 were added to older cultures, all large myotubes contracted and detached from the plate. Only the adhering myoblasts and small myotubes incorporated [35s[methionine into the muscle proteins and showed increased incorporation of label into 100 000 and 80 000 proteins. After ionophore pulse, the adhering cells retained the ability to differentiate and accumulate myosin. The effect of Ca2+ ionophores upon the rate of protein synthesis is presumably related to increased influx of extracellular Ca2+ with a rise in the Ca2+ concentration of the cytoplasm. We conclude that Ca2+ sensitive mechanisms may regulate the synthesis of a select group of muscle proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号