首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nitrate reductase inactivating factor was found in extractsof leaf blades, leaf sheaths, and roots of rice seedlings. Thefactor was nondialyzable, precipitable with (NH4)2SO4, and heatlabile. The factor from rice roots inactivated NADH nitratereductase, FMNH2 nitrate reductase, and NADH cytochrome c reductasefrom rice shoots, but had no effect on the activities of NADHdiaphorase and nitrite reductase. The factors from rice shoots,rice roots, and maize roots inactivated NADH nitrate reductaseprepared from cultured rice cells. The factor from culturedrice cells also inactivated rice shoot NADH nitrate reductase. The activity of the inactivating factor showed a diurnal changein shoots of rice seedlings grown with NO3– medium, althoughthe fluctuation was not large compared to that of NADH nitratereductase activity. When the seedlings were placed in darkness,the activity of the factor did not change during 20 hr withNO3– medium. However, the activity of the factor fluctuatedwith NO3– -free medium in light; its activity startedto increase at the 8th hour after transfer. NADH nitrate reductaseactivity from rice shoots declined rapidly during the first8 hr and gradually thereafter in both types of culture. (Received August 24, 1977; )  相似文献   

2.
Root growth of 7-d-old wheat (Triticum aestivum cv. Gamenya)seedlings was impaired at dissolved O2 concentrations of 0.01and 0.055 mol m–3 O2, while growth at 0.115 mol m–3O2 was the same as that in continuously aerated controls (0.26mol m–3 O2). Oxygen uptake by apical (0–2 mm), expanding (2–4mm) and expanded (10–12 mm) tissues of the roots decreasedbelow 0.16, 0.09 and 0.05 mol m–3 O2, respectively. Thishierarchy is consistent with the metabolic rates of these tissues.There was a small (c. 9%) inhibition of O2 uptake and some netsynthesis of ethanol and alanine in root apices at 0.115 molm–3 O2. Significant amounts of anaerobic end-productsaccumulated at 0.055 mol m–3 O2 and even more so at 0.01mol m–3 O2, indicating that oxidative phosphorylationwas strongly inhibited. Net alanine synthesis increased in fully expanded (10–16mm) tissues exposed to <0.003–0.01 mol m–3 O2,and this increase was accompanied either by a proportionallysmaller increase in the concentration of other free amino acidsor by a net decrease in free amino acid levels excluding alanine.This suggests that alanine was synthesized as an end-productof anaerobic catabolism and did not accumulate simply becauseof decreased net protein synthesis. Comparing the carbon flow to CO2, ethanol, lactate and alaninein roots at 0.01 mol m–3 O2 with carbon loss as CO2 inaerated roots suggests that carbon flow to products of metabolismwas not greatly enhanced due to O2 deficiency. This infers,but does not prove that, in wheat, generation of energy duringperiods of O2 deficiency is not enhanced due to a Pasteur effect. Key words: Anaerobic, fermentation, oxygen, wheat  相似文献   

3.
Reggiani, R., Brambilla, I. and Bertani, A. 1985. Effect ofexogenous nitrate on anaerobic metabolism in excised rice roots.I. Nitrate reduction and pyridine nucleotide pools.— J.exp.Bot 36:1193-1199. In apical segments of sterile rice roots, reduction of nitratein the absence of oxygen is promoted by the presence of exogenousnitrate in the growth medium in the first 3 h of oxygen deficiency.Anaerobic treatment also increased the concentration of NADH.When nitrate was made available for reduction, smaller accumulationsof NADH were observed. Oxidation of reduced nudeotides associatedwith the conversion of nitrate to nitrite is suggested as beingresponsible for this behaviour. Key words: Anaerobiosis, nitrate, pyridine nucleotides  相似文献   

4.
The effect of root temperature and form of inorganic nitrogensupply on in vitro nitrate reductase activity (NRA) was studiedin oilseed rape (Brassica napus L. cv. bien venu). Plants weregrown initially in flowing nutrient solution containing 10 µMNH4NO3 and then supplied with either nitrate or ammonium for15 d at root temperatures of 3, 7, 11 or 17 °C. Shoot temperatureregime was similar for all plants; 20/15 °C, day/night.Root NRA was highest when roots were grown at 3 and 7 °C.In laminae and petioles NRA was highest when roots were 11 or17 °C. The plants supplied with ammonium had much lowerlevels of NRA in roots after 5 d than the plants supplied onlywith nitrate. NRA in the laminae of plants supplied with ammoniumwas low relative to that in plants supplied with nitrate onlywhen root temperature was 11 or 17 °C. Values of the apparent activation energy (Ea) of NR, calculatedfrom the Arrhenius equation, in laminae and petioles were differentfrom roots suggesting difference in enzyme conformation. Evidencethat the temperature at which roots were growing affected Eawas equivocal. Oilseed rape, Brassica napus L., activation energy, ammonium, Arrhenius equation, nitrate, root temperature, nitrate reductase  相似文献   

5.
The adenylate energy charge, production of ethanol and lactate, and nitrate reductase activity were determined in order to study the influence of different nitrogen sources on the metabolic responses of roots of Carex pseudocyperus L. and Carex sylvatica HUDS. exposed to anaerobic nutrient solutions. Determination of adenylates was carried out by means of a modified HPLC technique. Total quantity of adenylates was higher in Carex pseudocyperus than in Carex sylvatica under all conditions. In contrast, the adenylate energy charge was only slightly different between the species and decreased more or less in relation to the applied nitrogen source under oxygen deficiency. The adenylate energy charge in roots of plants under nitrate nutrition showed a smaller decrease under anaerobic environmental conditions than plants grown with ammonium or nitrate/ammonium. Roots of nitrate-fed plants showed a lower ethanol and lactate production than ammonium/nitrate- and ammonium-fed plants. Ethanol production was higher in C. pseudocyperus, formation of lactate was lower compared to that in Carex sylvatica. The activity of enzymes involved in fermentation processes (ADH, LDH and PDC) was enhanced significantly after 24 hours of exposure to anaerobic nutrient solutions in roots of both species. The induction of these enzymes was only slightly influenced by different nitrogen supply. In vivo nitrate reductase activity increased almost 3-fold compared to the aerobic treatment in both species and overcompensated loss of NADH reoxidation capacity caused by decrease of ethanol and lactate development. Induction of in vitro nitrate reductase activity was enhanced 313% in C. pseudocyperus and 349% in C. sylvatica under anaerobic environmental conditions and nitrate supply. These results indicate that nitrate may serve as an alternative electron acceptor in anaerobic plant root metabolism and that the nitrate-supported energy charge may be due to an accelerated glycolytic flux resulting from a more effective NADH reoxidation capacity by nitrate reduction plus fermentation than by fermentation alone.Abbreviations ADH alcohol dehydrogenase - AEC adenylate energy charge - DMSO dimethyl sulfoxide - EDTA ethylen diamine tetraacetic acid - HPLC high performance liquid chromatography - LDH lactate dehydrogenase - NRA nitrate reductase activity - PCA perchloric acid - PDC pyruvate decarboxylase - PVP polyvinylpyrrolidone - PVPP polyvinylpolypyrrolidone - TCA trichloroacetic acid, Tris-tris(hydroxymethyl)aminomethane  相似文献   

6.
The Relationship Between Growth and Oxygen Uptake in Hypoxic Rice Seedlings   总被引:1,自引:0,他引:1  
Atwell, B. J. and Green way, H. 1987. The relationship betweengrowth and oxygen uptake in hypoxic rice seedlings.—J.exp. Bot. 38: 454–465. Rice seedlings (Oryza saliva L.) were grown in the dark forup to 4 d in solutions containing various concentrations ofO2. Compared with seedlings grown at 0·250 mol O2 m–3,the dry weight of the growing seedling was 14% lower at 0·110mol O2 m–3 and 60% lower at 0 mol O2 m–3. Decreasesin fresh weight were similar but not identical to decreasesin dry weight, possibly because leaf growth was suppressed evenabove 0·110 mol O2 m–3. Oxygen deficiency inhibitedroot growth more severely than coleoptile growth. Coleoptiles from seedlings grown in aerated solution were exposedto an atmosphere of pure N2 for 30 min. Anoxia caused a declinein ATP content and energy charge, suggestive of decreased oxidativephosphorylation. It is not clear whether the decline in oxidativephosphorylation was solely responsible for impaired growth inhypoxia. In seedlings growing at O2 concentrations less than 0·110mol O2 m–3, significant amounts of ethanol were synthesized.The rate of O2 uptake decreased markedly below 0·06 molO2 m–3; this was presumably near the external O2 concentrationat which oxidative phosphorylation became limited by the supplyof O2. The stage of development of the seedlings appeared toinfluence O2 uptake, possibly through changes in conductanceof the tissue to O2. Uncouplers were used to confirm that thecritical O2 concentration was dependent on O2 diffusion ratherthan enzyme kinetics. Impaired growth above 0·110 molO2 m–3 may have been due to a decreased activity of oxygenasesof relatively low affinity for O2, which in turn altered cellmetabolism. Key words: Growth, oxygen uptake, rice seedlings, hypoxia  相似文献   

7.
Alison M. Smith  Tom ap Rees 《Planta》1979,146(3):327-334
We did this work to discover the pathways of carbohydrate fermentation in unaerated roots of three species of flood-tolerant plants, Ranunculus sceleratus, Glyceria maxima, and Senecio aquaticus. The experiments were done with the apical 1–2 cm of the roots and the results for the three species were similar. The maximum catalytic activities of alcohol dehydrogenase, lactate dehydrogenase, phosphoenolpyruvate carboxylase, NADP-dependent malic enzyme, and phosphofructokinase were appreciable and roughly comparable. Reduced aeration of the roots led to 1.5 to 5-fold increases in the maximum catalytic activities of alcohol dehydrogenase, small increases in those of lactate dehydrogenase in two species, and no increase in those of phosphoenolpyruvate carboxylase and phosphofructokinase. Phosphoenolpyruvate carboxykinase could not be detected. Metabolism of [U-14C]sucrose under anaerobic conditions by excised roots, grown without aeration, led to appreciable labelling of ethanol and alanine, slight but significant labelling of lactate, and minimal labelling of malate and related organic acids. Incubation of similar excised roots under anaerobic conditions for 4 h caused marked accumulation of ethanol, smaller accumulation of lactate, and no detectable accumulation of malate. We conclude that in all three species fermentation of carbohydrate results in the accumulation of predominant amounts of ethanol, smaller amounts of lactate, no significant quantities of malate, and probably appreciable amounts of alanine. Crawford's metabolic theory of flooding tolerance is held to be incompatible with these results.Abbreviations MES 2-(N-morpholino)ethanesulphonic acid - MOPS 2-(N-morpholino)propanesulphonic acid  相似文献   

8.
The objective of this study was to evaluate the role of enzymeinduction and aerenchyma formation in prolonged tolerance tosoil flooding in a variety of underground clover (Trifoliumsubterraneum ‘Park’) previously selected for resistance.Seedlings were grown in hydroponic tanks, initially with aerationfor 3 weeks and subsequently in the absence of aeration forup to 3 weeks. After 1 h in the absence of aeration, theoxygen concentration in the hydroponic medium had decreasedto 1·5 %. During the 3 weeks of extreme oxygen deficiency,primary roots died and were replaced by considerable numbersof adventitious roots. Activities of many glycolytic and fermentativeenzymes increased in adventitious roots. Excised adventitiousroots were capable of immediate induction of ethanol in theabsence of lactate production, in association with energy chargehigher than that in excised roots of aerobically maintainedcontrols. Energy charge was even higher when measured in adventitiousroots in planta. Interestingly, haemoglobin protein could becorrelated with energy charge. Aerenchyma was readily visualizedin adventitious roots by optical microscopy of longitudinaland transverse sections. We conclude that avoidance of rootanoxia via aerenchyma is the major mechanism for prolonged roottolerance in Trifolium subterraneum ‘Park’.  相似文献   

9.
Influx of nitrate into the roots of intact barley plants wasfollowed over periods of 1–15 min using nitrogen-13 asa tracer. Based on measurements taken over 15 min from a rangeof external nitrate concentrations (0·2–250 mmolm–3), the kinetic parameters of influx, Imax and Km, werecalculated. Compared with plants grown in the presence of nitrate throughout,plants that had been starved of N for 3 d showed a significantlygreater value ofImax for 13N-nitrate influx (by a factor of1·4–1·8), but a similar value of Km (12–14mmol m–3). Pre-treating N-starved plants with nitratefor about 5 h further increased the subsequent rate of 13N-nitrateinflux, but had little effect in the unstarved controls. Allowingfor this induction of additional nitrate transport, the differencein rates of nitrate influx in control and N-starved plants wassufficient to account for the previously-observed differencein net uptake by the two groups of plants. In barley plants grown without any exposure to nitrate, butwith ammonium as N-source, both Imax and Km for subsequent 13N-nitrateinflux were significantly decreased (by about one-half) comparedwith the corresponding nitrate-grown controls. The importance of changes in the rate of influx in the regulationof net uptake of nitrate is discussed. Key words: Ion transport, nitrate, influx, kinetic parameters, N-deficiency  相似文献   

10.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

11.
Batch suspension cultures of chicory cells (Cichorium intybusL. var. Witloof) possess a NADH-specific nitrate reductase activitythat peaks on day 3 of a 10 d growth cycle. When both nitrateand ammonium are used as nitrogen sources, chicory cells absorbnitrate irst. Ammonium uptake becomes predominant at day 3,even though NO3 was still present in the medium. Althoughabscisic acid impairs growth as well as 15NO3 uptakeand reduction, it promotes nitrate reductase activity as measuredboth in vivo and in vitro. Specific activity is 50% higher inABA-treated cells than in controls. These conflicting data maybe explained either in erms of nitrate reductase levels or bythe availability of reducing power and energy. Since NRA isgenerally controlled by the availability of the reducing power,the energy status of the cell, the adenylate nucleotide pools,were measured simultaneously with the carbohydrate levels withinthe cell and the growth medium. The energy charge was not modifiedduring the growth cycle, regardless of the rowth conditions.Yet ABA modified the intracellular carbohydrate metabolism andinhibited the acidic invertase, the sucrose synthase and thesucrose phosphate synthase activities. Modified assimilationrates of nitrate in chicory cells grown in the presence of ABA,were probably correlated to modified carbohydrate metabolismpathways leading to increased availability of reducing power,energy and C-skeletons. Key words: Abscisic acid, Cichorium intybus L, nitrate reductase, reductase, invertase, sucrose synthase, sucrose phosphate synthase  相似文献   

12.
The Uptake of Gaseous Ammonia by the Leaves of Italian Ryegrass   总被引:5,自引:0,他引:5  
Lockyer, D. R. and Whitehead, D. C. 1986. The uptake of gaseousammonia by the leaves of Italian ryegrass.—J. exp. Bot.37: 919–927. Plants of Italian ryegrass (Lolium multiflorum Lam.) grown insoil with two rates of added 15N-labelled nitrate were exposed,in chambers, for 40 d to NH3 in the air at concentrations of16, 118 and 520 µg m–3. At the highest concentrationof NH3, this source provided 47?3% of the total nitrogen inplants grown with the lower rate of nitrate addition (100mgN kg–1 dry soil) and 35?2% with the higher rate (200mgN kg–1 dry soil) At the intermediate concentration ofNH3, the contributions to total plant N were 19?6% and 10?8%,respectively, at low and high nitrate while, at the lowest concentrationof NH3, they were 5?1% and 32%. Most of the N derived from theNH3 remained in the leaves, but some was transported to theroots. The amount of N derived from the NH3 that was presentin the leaves was not reduced by washing the leaves in waterat pH 5?0 before harvesting, indicating that the N was assimilatedby the plant and not adsorbed superficially. Rates of uptakeof NH3 per unit leaf area ranged from 1?7 µg dm–2h–1 at a concentration of 16 µg m–3 to 29?0µg dm–2 h–1 at a concentration of 520 µgm–3 and with the lower rate of nitrate addition. Increasingthe supply of nitrate to the roots slightly reduced the rateof uptake of NH3 per unit leaf area. Uptake of N from the higherrate of nitrate was reduced at the highest concentration ofNH3 in the air. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

13.
Seven heathland species, four herbaceous plants and three dwarfshrubs, were tested for their capacity to utilize NH4+ or NO3. When cultured in solution at pH 4.0 with 2mol m–3 N,all species showed similar growth responses with respect toN source. Nitrate was assimilated almost equally well as ammonium,with relative growth rate generally averaging 5–8% lowerfor NO3 grown plants, albeit not always significantly.However, N source was significantly and consistently correlatedwith biomass partitioning, as NH4+-fed plants allocated moredry matter to shoots and less to roots when compared to NO3-fed plants. The strong difference in biomass partitioning mayrelate to the relative surplus of carbon per unit plant N (or,alternatively, the relatively suboptimal rate of N assimilationper unit plantC) in NO3-fed plants Inherently slow-growing dwarf shrubs accumulated virtually nofree nitrate in their tissues and reduction of nitrate was strictlyroot-based. Faster-growing herbaceous plants, however, partitionedthe assimilation of nitrate over both shoots and roots, therebyaccumulating relatively high tissue NO3 levels. Ion uptakerates depended clearly on the ‘relative shoot demand’.At similar shoot demands, especially in the herbaceous species,specific uptake rates for N and total inorganic (non-N) anionswere higher in NH4+ -fed plants, whereas the uptake rate fortotal (non-N) cations was higher in NO3-fed plants. Rateof P uptake was enhanced with increasing plant demand, but wasindependent of the N source. Net H+ extrusions ranged from 1.00to 1.34 H+ per NH4+, and from –0.48 to –0.77 H+per NO3 taken up. Key words: Ammonium, biomass partitioning, heathland plants, low pH, nitrate, nitrate reductase activity, relative shoot demand, specific absorption rate  相似文献   

14.
Whitehead, D. C. and Lockyer, D. R. 1986. The influence of theconcentration of gaseous ammonia on its uptake by the leavesof Italian ryegrass, with and without an adequate supply ofnitrogen to the roots.—J. exp. Bot. 38: 818–827. Plants of Italian ryegrass (Lolium multiflorum Lam.) were grownin pots of soil with two rates of 15N-labclled nitrate, oneproviding adequate, and the other less than adequate, N formaximum growth. After 25 d in a controlled environment cabinet,the plants were transferred to chambers and exposed for 33 dto NH3in the air at one of nine concentrations ranging from14 to 709 µg NH3 m–3. Increasing the concentrationof NH3 in the air increased the dry weight of the shoots ofplants grown at the lower but not the higher rate of nitrate.The content of total N in the plant shoots (% dry weight) waslinearly related to NH3 concentration; at 709 µg NH3 andin both sets of plants it was more than double the content at14 µg NH3 m–3. Calculations, based on 15N enrichment,indicated that the amount of N taken up from the NH3 per unitleaf area increased linearly with increasing concentration ofNH3 in the air uptake (µg dm–2 h–1) = 0.1009xat the lower rate of nitrate and 0-0829x at the higher rateof nitrate, where x is the concentration of NH3 in the air expressedas µg NH3m–3. The proportion of the total plant N that was derived from theNH3 ranged from 4?0% at a concentration of 14 µg NH3 m–3with the higher rate of nitrate addition to 77?5% at a concentrationof 709 µg m–3 with the lower rate of nitrate addition.The proportions of the total N in the water-insoluble proteinof the leaf tissue that were derived from nitrate and gaseousNH3 were similar to the proportions in the whole leaf material. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

15.
Experiments were performed with soybean plants to test the hypothesisthat the inhibition of NO3 uptake in darkness is dueto feedback control by NO3 and/or Asn accumulating inthe roots. Xylem export of N compounds was shown to depend onwater flux in both excised root systems and 15N-labelled intactplants, suggesting that the shortage of transpiration in darknessmay be responsible for the retention of NO3 and Asn inthe roots. This was verified in experiments where the light/darkpattern of transpiration was modulated in intact plants by changingthe relative humidity of the atmosphere. Any decrease of transpirationat night was associated with a concurrent stimulation of NO3and Asn accumulations in the roots. However, the light/darkrhythmicity of NO3 uptake was only marginally affectedby these treatments, and thusappeared quite independent fromtranspiration and root NO3 or Asn levels. Typically,the maintainance of a constant transpiration during the day/nightcycle did not suppress the inhibition of NO3 uptake indarkness, whereas it almost prevented the dark increase in rootNO3 and Asn contents. These data strongly support theconclusion that the effect of light on NO3 uptake isnot mediated by changes in translocation and accumulation ofN compounds. Key words: Glycine max, light/dark, cycles, nitrate uptake, transpiration, transport of N compounds, accumulation of N compounds  相似文献   

16.
Two ferredoxin-dependent proteins, nitrite reductase and glutamate synthase, play a role in nitrate assimilation during the anaerobic germination of rice (Oryza sativa L.). This paper reports the expression of the root form of ferredoxin-NADP+ oxidoreductase (FNR), the protein responsible for providing reduced ferredoxin in rice coleoptiles. Using an antibody against FNR, a protein with the expected molecular mass for root FNR (35 kDa) was recognized by Western blot analysis in extracts from aerobic and anaerobic coleoptiles. The enzyme is synthesized de novo, as shown by immunoprecipitation of the radiolabeled 35-kDa protein from anaerobic seedlings grown in the presence of [35S]methionine. Northern blot analysis with specific probes for root and leaf FNR showed the presence of mRNA for the root form but not for the leaf form, in both aerobic and anaerobic rice coleoptiles. The inductive effect of exogenous nitrate on the expression of FNR is further evidence for the presence of the root type of FNR in rice coleoptiles. The importance of the expression of root FNR during the anaerobic development of rice seedlings is discussed. Received: 7 October 1996 / Accepted: 22 January 1997  相似文献   

17.
Young intact plants of maize (Zea mays L. cv INRA 508) were exposed to 2 to 4 kilopascals partial pressure oxygen (hypoxic pretreatment) for 18 hours before excision of the 5 millimeter root apex and treatment with strictly anaerobic conditions (anoxia). Hypoxic acclimation gave rise to larger amounts of ATP, to larger ATP/ADP and adenylate energy charge ratios, and to higher rates of ethanol production when excised root tips were subsequently made anaerobic, compared with root tips transferred directly from aerobic to anaerobic media. Improved energy metabolism following hypoxic pretreatment was associated with increased activity of alcohol dehydrogenase (ADH), and induction of ADH-2 isozymes. Roots of Adh1 mutant plants lacked constitutive ADH and only slowly produced ethanol when made anaerobic. Those that were hypoxically pretreated acclimated to anoxia with induction of ADH2 and a higher energy metabolism, and a rate of ethanol production comparable to that of nonmutants. All these responses were insensitive to the presence or absence of NO3. Additionally, the rate of ethanol production was about 50 times greater than the rate of reduction of NO3 to NO2. These results indicate that nitrate reductase does not compete effectively with ADH for NADH, or contribute to energy metabolism during anaerobic respiration in this tissue through nitrate reduction. Unacclimated root tips of wild type and Adhl mutants appeared not to survive more than 8 to 9 hours in strict anoxia; when hypoxically pretreated they tolerated periods under anoxia in excess of 22 hours.  相似文献   

18.
Lamaze, T., Sentenac, H. and Grignon, C. 1987. Orthophosphaterelations of root: NO3effects on orthophosphate influx,accumulation and secretion into the xylem.—J. exp. Bot.38: 923–934. Orthophosphate (Pi) accumulation by barley (Hordeum vulgareL.) roots was specifically inhibited by NO3 as comparedto Cl and SO42 –, and Pi secretion into the xylemwas stimulated. The inhibition of Pi accumulation by NO3was also observed in roots of intact photosynthesizing horsebean(Vicia faba L.), rice (Oryza sativa L.) and soybean (Glycinemax L.) plants. NO3 effects on Pi transport by rootswere more thoroughly investigated with corn (Zea mays L.). Theywere due to intracellular NO3. Pi secretion was stillstimulated by NO3 after Pi withdrawal from the absorptionsolution. 32Pi influx decreased during Pi accumulation, supportingthe hypothesis that this ion allosterically regulated its owntransport system by feedback control. This control was modulatedby other anions: the decrease was more pronounced in the presenceof nitrate. Chronologically, the depressive effect of NO3on 32Pi influx appeared after the inhibition of Pi accumulation.Furthermore, under conditions where Pi accumulation was notaffected by NO3, 32Pi influx and Pi secretion into thexylem became insensitive to the presence of nitrate. Our hypothesisis that the stimulative effect of NO3 on Pi secretionand the depressive one on 32Pi influx are the repercussionsof an increase in the Pi cytosolic concentration due to an NO3-induced decrease in Pi uptake by the vacuoles. Key words: Root, orthophosphate fluxes, orthophosphate accumulation, nitrate, ionic interaction  相似文献   

19.
Barley and rice, at the early tillering stage, were grown inaerated nutrient solutions (> 7 mg O2 l–1) and transferredto solutions of low O2 concentrations (< 0.5 mg l –1). For barley, low O2 concentrations during the first 5 days severelyinhibited growth of seminal roots had less effect on nodal roots,and did not reduce shoot growth. Longer exposure to low O2 concentrationsreduced shoot as well as root growth. Sugar concentrations inroots and shoots increased within 7 h after transfer of plantsto low O2 concentrations. After 5 days at low O2 concentrationssugar concentrations were very high in fast growing nodal rootsand in shoots, as well as in the slower growing seminal roots. In rice, low O2 concentrations increased sugar levels of rootsduring summer, but not during winter. In summer, the highersugar levels at low O2 concentrations persisted throughout adiurnal cycle. In root apices, sugar concentrations were increasedby low O2 concentrations, even though the experiment was donein winter and the bulk of the root system showed no differencein sugar levels. The data indicate that sugar accumulation, at low O2 concentrations,is caused by reduced growth and also that even apices of rootsgrown at low O2 concentrations have sufficient substrates forrespiration. Hordeum vulgare L, barley, Oryza sativa L, rice, sugar accumulation, oxygen concentration  相似文献   

20.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号