首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Water diffusion in maize roots (Zea mays L., cv. Donskaya 1) was investigated with a pulsed gradient NMR using mercuric chloride as an inhibitor of water channels in cell membranes. A novel operation program was applied that allowed selective evaluation of fractional amounts of water transported through various pathways—the apoplastic, symplasmic, and transmembrane routes. The blockage of water channels with HgCl2 reduced the rates of water diffusion by a factor of 1.5–2. This effect was reversible and was removed by the addition of -mercaptoethanol. The coefficient of water diffusion changed with time elapsed after the HgCl2 treatment. The effect of water stress on the rates of water diffusion was similar to that of HgCl2. Remarkably, the water-stressed roots of maize seedlings were insensitive to the inhibitor of water channels. The results are interpreted in terms of redistribution of water flows among various routes in plant tissues. Water stress and mercuric chloride treatments decelerate the transmembrane water transport and promote water flow along the apoplastic pathway. These responses might arise from the reversible regulation of water movement along various transport pathways.  相似文献   

2.
Involvement of extracellular Ca2+ in stomatal movement through the regulation of water channels was investigated in broad bean (Vicia faba L.). Leaf peels were first incubated to open stomata, and then transferred to buffers in the presence of different CaCl2 concentrations. Stomatal status was observed under magnification and stomatal aperture (pore width/length) was measured. Stomatal closure was significantly induced and aperture oscillation occurred at lower extracellular concentrations of calcium ([Ca2+]ext), while at higher concentrations, no significant change in stomatal aperture was observed, which was similar to the response recorded with HgCl2. Lower [Ca2+]ext-induced stomatal closure could be reversed using depolarizing buffer. It is suggested that lower [Ca2+]ext regulates water channels through an indirect way and at higher concentrations, extracellular Ca2+ is involved in regulating stomatal aperture by directly influencing water channels to retard aperture change.  相似文献   

3.
The mean effective water self-diffusion coefficient in maize root segments under the effect of aquaporin blocker (mercuric chloride, 0.1 mM) was measured using the spin-echo NMR method with pulsed magnetic field gradient within the temperature range from 10 to 35 °C. HgCl2 caused the reduction in water diffusion by 30 % as compared to the control samples. Temperature dependences of water self-diffusion coefficients showed two linear regions with different values of Q10 and activation energy, Ea. As the temperature reduced from 20 to 10 °C, Ea values calculated from the Arrhenius plots were close to those of bulk water (20 ± 3 kJ mol−1) and slightly changed for the sample pretreated HgCl2. Within the temperature range from 25 to 35 °C the slope of temperature dependences became steeper and Ea values were 31 ± 3 kJ mol−1 for the control and 40 ± 4 kJ mol−1 for the treated sample. In the vicinity of 20 °C, the temperature dependence of water diffusion via the mercury-sensitive water channels showed extreme value. In the region, the specific area of the mercury-sensitive aquaporins was 0.004 % of the total cell surface area. The data indicate that water transfer via aquaporins is sensitive to temperature, and the contributions of the transmembrane pathways (aquaporins, lipid bilayer) differ in different temperature ranges.  相似文献   

4.
Evaporation of water from the cell surface of the internode ofChara corallina was not affected by HgCl2 which is known to inhibit water channels. This makes a sharp contrast to the fact that most of osmotically driven water transport is inhibited by HgCl2. Also in radish hypocotyls whose epidermis had been peeled off, evaporation of water was not inhibited by HgCl2, while osmotic water transport was significantly inhibited. The cell wall tube was prepared by squeezing out the content of theChara internode. The rate of evaporation from the cell wall tube filled with 150 mM KCl was almost equal to that from the living cell. The apparent hydraulic conductivity of the cell calculated from evaporation rate was found to be 1–2×10−3 pm s−1 Pa−1 which is about 1/1000 times the hydraulic conductivity of the plasma membrane (Lp) and 1/40 times the Lp under maximal inhibition with HgCl2. It is concluded that under the relative humidity of 53–70% the rate of evaporation of water from the cell surface is limited by the rate of evaporation from the cell wall which is so low that the loss of water can be supplemented without delay from the cell interior across the plasma membrane even when water channels are completely closed.  相似文献   

5.
Mercurial-sensitive water transport in barley roots   总被引:16,自引:0,他引:16  
An isolated barley root was partitioned into the apical and basal part across the partition wall of the double-chamber osmometer. Transroot water movement was induced by subjecting the apical part to a sorbitol solution, while the basal part with the cut end was in artificial pond water. The rate of transroot osmosis was first low but enhanced by two means, infilitration of roots by pressurization and repetition of osmosis. Both effects acted additively. The radial hydraulic conductivity (Lpr) was calculated by dividing the initial flow rate with the surface area of the apical part of the root, to which sorbitol was applied, and the osmotic gradient between the apical and basal part of the root. Lpr which was first 0.02–0.04 pm s−1 Pa−1 increased up to 0.25–0.4 pm s−1 Pa−1 after enhancement. Enhancement is assumed to be caused by an increase of the area of the plasma membrane which is avallable to osmotic water movement. The increased Lpr is in the same order of magnitude as the hydraulic conductivity (Lp) of epidermal and cortical cells of barley roots obtained by Steudie and Jeschke (1983). HgCl2, a potent inhibitor of water channels, suppressed Lpr of non-infiltrated and infiltrated roots down to 17% and 8% of control values, respectively. A high sensitivity of Lpr to HgCl2 suggests that water channels constitute the most conductive pathway for osmotic radial water movement in barley roots.  相似文献   

6.
Summary 1. Indirect and direct twitch (0.1-Hz) stimulation of the rat phrenic nerve-diaphragm disclosed that the inhibitory effect of HgCl2, 3.7 × 10–5 M, on the neuromuscular transmission and in the muscle cell, was accelerated by 10-sec periods of 50-Hz tetanic stimulation every 10 min. This activity-dependent enhancement suggested an inhibitory mechanism of HgCl2 related to the development of fatigue, like membrane depolarization or decreased excitability, decreased availability of transmitter, or interference with the factors controlling excitation-secretion coupling of the nerve terminal, i.e. (Ca2+)0 or (Ca2+)i, and excitation-contraction coupling in the muscle cell, i.e., (Ca2+)i.2. During both indirect and direct stimulation, HgCl2-induced inhibition was enhanced markedly by pretreatment with caffeine, which releases Ca2+ from endoplasmic and sarcoplasmic reticulum in the nerve terminal and muscle cell, respectively. This caffeine-induced enhancement was completely antagonized by dantrolene, which inhibits the caffeine-induced release. However, dantrolene alone did not antagonize the HgCl2-induced inhibition.3. Since caffeine depletes the intracellular Ca2+ stores of the smooth endoplasmic reticulum, HgCl2 probably inhibits by binding to SH groups of transport proteins conveying the messenger function of (Ca2+)i. In the muscle cell this leads to inhibition of contraction. In the nerve terminal, an additional enhancement of the HgCl2-induced inhibition, by inhibiting reuptake of choline by TEA and tetanic stimulation, suggested that HgCl2 inhibited a (Ca2+)i signal necessary for this limiting factor in resynthesis of acetylcholine.4. The (Ca2+)0 signal necessary for stimulus-induced release of acetylcholine was not affected by HgCl2. Hyperpolarization in K+-free solution antagonized the inhibitory effect of HgCl2 at indirect stimulation, and Ca2+-free solution enhanced the inhibitory effect at direct stimulation. K+ depolarization, membrane electric field increase with high Ca2+, membrane stabilization with lidocaine, and half-threshold stimulation, did not change the inhibitory effect of HgCl CH3HgCl, 1.85 × 10–5 M, disclosed a synergistic interaction with caffeine during direct, but not during indirect, stimulation.  相似文献   

7.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

8.
以当年生圆柏幼苗为实验材料,采用温室调控盆栽土培法研究了不同浓度NaCl(0、100、200、300mmol·L-1)胁迫21d对其生长情况及不同器官(根、茎、叶)中K~+、Na~+、Ca~(2+)和Mg~(2+)的吸收和分配的影响,以探讨圆柏幼苗对盐环境的生长适应性及耐盐机制。结果表明:(1)随着NaCl胁迫浓度的增加,圆柏幼苗生长,包括株高、地径、相对生长量以及生物量的积累均呈下降趋势,而其根冠比却增加。(2)在各浓度NaCl胁迫处理下,圆柏幼苗根、茎、叶中Na~+含量较对照均显著增加,而且叶中Na~+含量显著高于茎和根,叶中Na~+含量是根中的5倍。(3)随着NaCl胁迫浓度的升高,圆柏幼苗各器官中K~+、Ca~(2+)和Mg~(2+)含量以及K~+/Na~+、Ca~(2+)/Na~+及Mg~(2+)/Na~+比值均呈下降趋势。(4)在NaCl胁迫条件下,圆柏幼苗根系离子吸收选择性系数SK,Na、SCa,Na、SMg,Na显著提高,茎、叶离子转运选择性系数SCa,Na、SMg,Na则逐渐降低,叶中离子转运选择性系数SK,Na则随着NaCl胁迫浓度的升高显著降低,大量Na~+进入地上部,减缓了盐胁迫对根系的伤害。研究认为,圆柏幼苗的盐适应机制主要是通过根系的补偿生长效应及茎、叶对Na~+的聚积作用来实现的,同时也与根对K~+、Ca~(2+)、Mg~(2+)的选择性运输能力增强和茎、叶稳定的K~+、Ca~(2+)、Mg~(2+)的选择性运输能力有关。  相似文献   

9.
Gibberellic acid improves water deficit tolerance in maize plants   总被引:1,自引:0,他引:1  
The combination effects of water stress and gibberellic acid (GA3) on physiological attributes and nutritional status of maize (Zea mays L. cv., DK 647 F1) were studied in a pot experiment. Maize plants were grown in the control (well watered WW) and water stress subjected to treated both water stress and two concentrations of gibberellic acid (GA3 25 mg L−1, 50 mg L−1). WS was imposed by maintaining the moisture level equivalent to 50 % pot capacity whereas the WW pots were maintained at full pot capacity. Water stress reduced the total dry weight, chlorophyll concentration, and leaf relative water content (RWC), but it increased proline accumulation and electrolyte leakage in maize plants and appears to affect shoots more than roots. Both concentrations of GA3 (25 and 50 mg L−1) largely enhanced the above physiological parameters to levels similar to control. WS reduced leaf Ca2+ and K+ concentrations, but exogenous application of GA3 increased those nutrient levels similar or close to control. Exogenous application of GA3 improved the water stress tolerance in maize plants by maintaining membrane permeability, enhancing chlorophyll concentration, leaf relative water content (LRWC) and some macro-nutrient concentrations in leaves.  相似文献   

10.
Internodal cells of a brackish water charophyte,Lamprothamnium succinctum (A. Br. in Ash.) R.D.W. regulate the turgor pressure in response to changes in both the cellular and the external osmotic pressures. During turgor regulation upon hypotonic treatment, net effluxes of K+ and Cl from the vacuole, membrane depolarization, a transient increase in the electrical membrane conductance and a transient increase in concentration of cytoplasmic Ca2+ are induced. Activation of the plasmalemma Ca2+ channels and the Ca2+-controlled passive effluxes of K+ and Cl through the plasmalemma ion channels are postulated.  相似文献   

11.
以披针叶黄华(Thermopsis lanceolata)试管苗为材料,通过组培方法研究其在0、0.2%、0.4%、0.6%、0.8%和1.0%NaCl和Na2SO4胁迫30d后的生长、有机渗透调节物质和无机渗透调节物质(Na+、K+和Ca2+)含量的变化,以探讨其耐盐性机制。结果显示:(1)随NaCl和Na2SO4胁迫浓度的增加,披针叶黄华试管苗叶片脯氨酸和可溶性糖含量均显著持续增加,且NaCl胁迫下脯氨酸上升的幅度均大于相同浓度Na2SO4胁迫下的增幅,而可溶性糖上升的幅度却小于相同浓度Na2SO4胁迫下的幅度;可溶性蛋白含量随NaCl浓度的增大呈先升高后降低的趋势,但随Na2SO4浓度的增加呈持续上升的趋势。(2)随NaCl和Na2SO4浓度的增加,披针叶黄华试管苗Na+含量呈增加趋势且各处理均显著高于对照,Ca2+含量和叶片K+含量却呈逐渐减少趋势且各处理均显著低于对照,而根系K+含量呈先降后升的趋势;Na2SO4胁迫下披针叶黄华试管苗叶片Na+含量上升幅度以及K+和Ca2+含量下降幅度均明显低于相同浓度NaCl胁迫组;而Na+/K+和Na+/Ca2+比值随NaCl和Na2SO4浓度增加而升高;NaCl胁迫下,叶片Na+/K+和Na+/Ca2+高于相同浓度Na2SO4胁迫下的比值,而根系Na+/K+和Na+/Ca2+却低于相同浓度Na2SO4胁迫下的比值。研究表明,盐胁迫下,披针叶黄华试管苗通过抑制叶片中Na+积累并增加可溶性糖和可溶性蛋白含量,在根系中维持较高K+和Ca2+含量以及较低水平Na+/K+和Na+/Ca2+比,以降低披针叶黄华细胞渗透势来适应盐渍环境;披针叶黄华对NaCl胁迫的调节能力弱于Na2SO4。  相似文献   

12.
Influx of Rb+(86Rb+) and Ca2+(45Ca2+) was determined in roots of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) after 14 days at 16°C/16 h light, after 1 and 8 weeks of cold acclimation (2°C/8 h light) and at intervals after deacclimation (16°C/16 h light) for up to 14 days. The plants were cultivated at 3 ionic strengths: 100, 10 and 1% of a full strength nutrient solution, containing 3.0 mM K+ and 1.0 mM Ca2+. K+ concentrations in roots and shoots increased during cold treatment, while Ca2+ in the roots decreased. In the shoots Ca2+ concentrations remained the same. Influx of Rb+ as a function of average K+ concentration in the roots of 14-day-old, non-cold-treated plants was high at a certain K+ level in the root and decreased at higher root K+ levels (negative feedback). The pattern for Ca2+ influx versus average concentration of Ca2+ in the root was the reverse. Independent of duration of treatment (1–8 weeks), cold acclimation partly changed the regulation of Rb+ influx, so that it became less dependent upon negative feedback and more dependent on the ionic strength of the cultivation solution. After exposure to 2°C, Ca2+ influx increased at high Ca2+ concentrations in the root as compared with influx in roots of 14-day-old non-cold-treated plants. Under deacclimation, Ca2+ influx gradually decreased again, and reached the level observed before cold treatment within 7–14 days at 16°C; the number of days depending on the exposure time at 2°C. It is suggested that Rb+(K+) influx became adjusted to low temperature and that abscisic acid (ABA) may be involved in this mechanism. It is also suggested that extrusion of Ca2+ was impaired and/or Ca2+ channels were activated at 2°C in roots of plants grown in the full-strength solution and that extrusion was gradually restored and/or Ca2+ channels were closed under deacclimation conditions.  相似文献   

13.
Responses of wheat (Triticum aestivum L.) to various concentrations of NaCl and levels of drought were followed. With the rise of NaCl or drought, or NaCl and drought together, growth was retarded. The water content of shoots and roots was mostly unchanged. The chlorophyll and carotenoid contents were increased in plants subjected to salinity or drought or both. Only high salinity level induced a considerable decrease in net photosynthetic rate (PN) and dark respiration rate (RD). PN and RD were decreased with the decrease of soil moisture content. The content of Na+ in the shoots and roots of wheat plants increased with increasing salinity or decreasing soil moisture content or both treatments. Considerable variations in the content of K+, Ca2+ or Mg2+ were induced by the NaCl, drought or both treatments.  相似文献   

14.
Our previous studies suggested the cross talk of nitric oxide (NO) with Ca2+ in regulating stomatal movement. However, its mechanism of action is not well defined in plant roots. In this study, sodium nitroprusside (SNP, a NO donor) showed an inhibitory effect on the growth of wheat seedling roots in a dose-dependent manner, which was alleviated through reducing extracellular Ca2+ concentration. Analyzing the content of Ca2+ and K+ in wheat seedling roots showed that SNP significantly promoted Ca2+ accumulation and inhibited K+ accumulation at a higher concentration of extracellular Ca2+, but SNP promoted K+ accumulation in the absence of extracellular Ca2+. To gain further insights into Ca2+ function in the NO-regulated growth of wheat seedling roots, we conducted the patch-clamped protoplasts of wheat seedling roots in a whole cell configuration. In the absence of extracellular Ca2+, NO activated inward-rectifying K+ channels, but had little effects on outward-rectifying K+ channels. In the presence of 2 mmol L−1 CaCl2 in the bath solution, NO significantly activated outward-rectifying K+ channels, which was partially alleviated by LaCl3 (a Ca2+ channel inhibitor). In contrast, 2 mmol L−1 CaCl2 alone had little effect on inward or outward-rectifying K+ channels. Thus, NO inhibits the growth of wheat seedling roots likely by promoting extracellular Ca2+ influx excessively. The increase in cytosolic Ca2+ appears to inhibit K+ influx, promotes K+ outflux across the plasma membrane, and finally reduces the content of K+ in root cells.  相似文献   

15.
Two-year-old olive trees (Olea europaea L., cv. Coratina) were subjected to a 15-day period of water deficit, followed by 12 days of rewatering. Water deficit caused decreases in predawn leaf water potential (Ψw), relative water content and osmotic potential at full turgor (Ψ π100) of leaves and roots, which were normally restored upon the subsequent rewatering. Extracts of leaves and roots of well-watered olive plants revealed that the most predominant sugars are mannitol and glucose, which account for more than 80% of non-structural carbohydrates and polyols. A marked increase in mannitol content occurred in tissues of water-stressed plants. During water deficit, the levels of glucose, sucrose and stachyose decreased in thin roots (with a diameter <1 mm), whereas medium roots (diameter of 1–5 mm) exhibited no differences. Inorganic cations largely contribute to Ψ π100 and remained stable during the period of water deficit, except for the level of Ca2+, which increased of 25% in water-stressed plants. The amount of malate increased in both leaves and roots during the dry period, whereas citrate and oxalate decreased. Thin roots seem to be more sensitive to water deficit and its consequent effects, while medium roots present more reactivity and a higher osmotic adjustment. The results support the hypothesis that the observed decreases in Ψw and active osmotic adjustment in leaves and roots of water-stressed olive plants may be physiological responses to tolerate water deficit.  相似文献   

16.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

17.
Sugars act as vital signaling molecules that regulate plant growth, development and stress responses. However, the effects of sugars on stomatal movement have been unclear. In our study, we explored the effects of monosaccharides such as glucose and mannose on stomatal aperture. Here, we demonstrate that glucose and mannose trigger stomatal closure in a dose‐ and time‐dependent manner in epidermal peels of broad bean (Vicia faba). Pharmacological studies revealed that glucose‐ and mannose‐induced stomatal closure was almost completely inhibited by two reactive oxygen species (ROS) scavengers, catalase (CAT) and reduced glutathione (GSH), was significantly abolished by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), whereas they were hardly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM). Furthermore, glucose‐ and mannose‐induced stomatal closure was strongly inhibited by a Ca2+ channel blocker, LaCl3, a Ca2+ chelator, ethyleneglycol‐bis(beta‐aminoethylether)‐N,N'‐tetraacetic acid (EGTA) and two water channel blockers, HgCl2 and dimethyl sulfoxide (DMSO); whereas the inhibitory effects of the water channel blockers were essentially abolished by the reversing agent β‐mercaptoethanol (β‐ME). These results suggest that ROS production mainly via NADPH oxidases, Ca2+ and water channels are involved in glucose‐ and mannose‐induced stomatal closure.  相似文献   

18.
In the present study we examine the effects of Al on the uptake of Ca2+ and H2PO-4 in beech (Fagus sylvatica L.) grown in inorganic nutrient solutions and nutrient solutions supplied with natural fulvic acids (FA). All the solutions used were chemically well characterized. The uptake of Al by roots of intact plants exposed to solutions containing 0, 0.15 or 0.3 mM AlCl3 for 24 h, was significantly less if FA (300 mg l−1) were also present in the solutions. The Ca2+(45Ca2+) uptake was less affected by Al in solutions supplied with FA than in solutions without FA. There was a strong negative correlation between the Al and Ca2+ uptake (r2=0.98). When the Al and Ca2+ (45Ca2+) uptake were plotted as a function of the Al3+ activity (or concentration of inorganic mononuclear Al), almost the same response curves were obtained for the -FA and +FA treatments. We conclude that FA-complexed Al was not available for root uptake and therefore could not affect the Ca2+ uptake. The competitive effect of Al on the Ca2+ uptake was also shown in a 5-week cultivation experiment, where the Ca concentration in shoots decreased at an AlCl3 concentration of 0.3 mM. The effect of Al on H2PO4 uptake was more complex. The P content in roots and shoots was not significantly affected, compared with the control, by cultivation for 5 weeks in a solution supplied with 0.3 mM AlCl3, despite a reduction of the H2PO4 concentration in the nutrient solution to about one-tenth. At this concentration Al obviously had a positive effect on H2PO4 uptake. The presence of FA decreased 32P-phosphate uptake by more than 60% during 24 h, and the addition of 0.15 or 0.3 mM AlCl3 to these solutions did not alter the uptake of 32P-phosphate.  相似文献   

19.
The role of homocysteine for store-operated calcium influx was investigated in human umbilical cord endothelial cell line. Homocysteine significantly decreased thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization. GSH and DTT prevented homocysteine-induced inhibition of thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; while GSSG had the opposite effect. Homocysteine blocked large conductance Ca2+-activated K+ (BKCa) channels in a concentration-dependent manner and related to the redox status of the endothelial cells. BKCa channels opener NS1619 reversed thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; BKCa channels inhibitor iberiotoxin had the opposite effect. The findings suggest that homocysteine is involved in store-regulated Ca2+ entry through membrane potential-dependent and actin cytoskeleton-dependent mechanisms, redox status of homocysteine and BKCa channels may play a regulatory role in it. (Mol Cell Biochem 269: 37–47, 2005)  相似文献   

20.
Hydroxyl radicals (*OH) as produced in the Fenton reaction (Fe2+ + H2O2 = Fe3+ + OH + *OH) have been used to reversibly inhibit aquaporins in the plasma membrane of internodes of Chara corallina. Compared to conventional agents such as HgCl2, *OH proved to be more effective in blocking water channels and was less toxic to the cell. When internodes were treated for 30 min, cell hydraulic conductivity (Lp) decreased by 90% or even more. This effect was reversed within a few minutes after removing the radicals from the medium. In contrast to HgCl2, radical treatment reduced membrane permeability of small lipophilic organic solutes (ethanol, acetone, 1‐propanol, and 2‐propanol) by only 24 to 52%, indicating some continued limited movement of these solutes across aquaporins. The biggest effect of *OH treatment on solute permeability was found for isotopic water (HDO), which largely used water channels to cross the membrane. Inhibition of aquaporins reduced the diffusional water permeability (Pd) by about 70%. For the organic test solutes, which mainly use the bilayer to cross the membrane, channel closure caused anomalous (negative) osmosis; that is, cells had negative reflection coefficients (σs) and were transiently swelling in a hypertonic medium. From the ratio of bulk (Lp or osmotic permeability coefficient, Pf) to diffusional (Pd) permeability of water, the number (N) of water molecules that align in water channels was estimated to be N = Pf/Pd = 46 (on average). Radical treatment decreased N from 46 to 11, a value still larger than unity, which would be expected for a membrane lacking pores. The gating of aquaporins by *OH radicals is discussed in terms of a direct action of the radicals when passing the pores or by an indirect action via the bilayer. The rapid recovery of inhibited channels may indicate an easy access of cytoplasmic antioxidants to closed water channels. As hydrogen peroxide is a major signalling substance during different biotic and abiotic stresses, the reversible closure of water channels by *OH (as produced from H2O2 in the apoplast in the presence of transition metals such as Fe2+ or Cu+) may be downstream of the H2O2 signalling. This may provide appropriate adjustments in water relations (hydraulic conductivity), and a common response to different kinds of stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号