首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to human health, particularly through hospital acquired infection. The spread of MRSA means that novel targets are required to develop potential inhibitors to combat infections caused by such drug-resistant bacteria. Thymidylate kinase (TMK) is attractive as an antibacterial target as it is essential for providing components for DNA synthesis. Here, we report crystal structures of unliganded and thymidylate-bound forms of S. aureus thymidylate kinase (SaTMK). His-tagged and untagged SaTMK crystallize with differing lattice packing and show variations in conformational states for unliganded and thymidylate (TMP) bound forms. In addition to open and closed forms of SaTMK, an intermediate conformation in TMP binding is observed, in which the site is partially closed. Analysis of these structures indicates a sequence of events upon TMP binding, with helix alpha3 shifting position initially, followed by movement of alpha2 to close the substrate site. In addition, we observe significant conformational differences in the TMP-binding site in SaTMK as compared to available TMK structures from other bacterial species, Escherichia coli and Mycobacterium tuberculosis as well as human TMK. In SaTMK, Arg 48 is situated at the base of the TMP-binding site, close to the thymine ring, whereas a cis-proline occupies the equivalent position in other TMKs. The observed TMK structural differences mean that design of compounds highly specific for the S. aureus enzyme looks possible; such inhibitors could minimize the transfer of drug resistance between different bacterial species.  相似文献   

2.
3.
Virulent lactococcal phages of the Siphoviridae family are responsible for the industrial milk fermentation failures worldwide. Lactococcus lactis, a Gram-positive bacterium widely used for the manufacture of fermented dairy products, is subjected to infections by virulent phages, predominantly those of the 936 group, including phage p2. Among the proteins coded by lactococcal phage genomes, of special interest are those expressed early, which are crucial to efficiently carry out the phage lytic cycle. We previously identified and solved the 3D structure of lactococcal phage p2 ORF34, a single stranded DNA binding protein (SSBp2). Here we investigated the molecular basis of ORF34 binding mechanism to DNA. DNA docking on SSBp2 and Molecular Dynamics simulations of the resulting complex identified R15 as a crucial residue for ssDNA binding. Electrophoretic Mobility Shift Assays (EMSA) and Atomic Force Microscopy (AFM) imaging revealed the inability of the Arg15Ala mutant to bind ssDNA, as compared to the native protein. Since R15 is highly conserved among lactococcal SSBs, we propose that its role in the SSBp2/DNA complex stabilization might be extended to all the members of this protein family.  相似文献   

4.
5.
6.
Overall structural changes of enzymes in response to ligand binding were investigated by database analysis of 62 non-redundant enzymes whose ligand-unbound and ligand-bound forms were available in the Protein Data Bank. The results of analysis indicate that transferases often undergo large rigid-body domain motions upon ligand binding, while other enzymes, most typically, hydrolases, change their structures to a small extent. It was also found that the solvent accessibility of the substrate molecule was low in transferases but high in hydrolases. These differences are explained by the enzymatic reaction mechanisms. The transferase reaction requires the catalytic groups to be insulated from the water environment, and thus transferases bury the ligand molecule inside the protein by closing the cleft. On the other hand, the hydrolase reaction involves the surrounding water molecules and occurs at the protein surface, requiring only a small structural change.  相似文献   

7.
8.
9.
Anopheles gambiae mosquitoes that transmit Plasmodium falciparum malaria use a series of olfactory cues present in human sweat to locate their hosts for a blood meal. Recognition of these odor cues occurs through the interplay of odorant receptors and odorant-binding proteins (OBPs) that bind to odorant molecules and transport and present them to the receptors. Recent studies have implicated potential heterodimeric interactions between two OBPs, OBP1 and OBP4, as important for perception of indole by the mosquito (Biessmann, H., Andronopoulou, E., Biessmann, M. R., Douris, V., Dimitratos, S. D., Eliopoulos, E., Guerin, P. M., Iatrou, K., Justice, R. W., Kröber, T., Marinotti, O., Tsitoura, P., Woods, D. F., and Walter, M. F. (2010) PLoS ONE 5, e9471; Qiao, H., He, X., Schymura, D., Ban, L., Field, L., Dani, F. R., Michelucci, E., Caputo, B., della Torre, A., Iatrou, K., Zhou, J. J., Krieger, J., and Pelosi, P. (2011) Cell. Mol. Life Sci. 68, 1799–1813). Here we present the 2.0 Å crystal structure of the OBP4-indole complex, which adopts a classical odorant-binding protein fold, with indole bound at one end of a central hydrophobic cavity. Solution-based NMR studies reveal that OBP4 exists in a molten globule state and binding of indole induces a dramatic conformational shift to a well ordered structure, and this leads to the formation of the binding site for OBP1. Analysis of the OBP4-OBP1 interaction reveals a network of contacts between residues in the OBP1 binding site and the core of the protein and suggests how the interaction of the two proteins can alter the binding affinity for ligands. These studies provide evidence that conformational ordering plays a key role in regulating heteromeric interactions between OBPs.  相似文献   

10.
The crystal structure of Mycobacterium tuberculosis adenylate kinase (MtAK) in complex with two ADP molecules and Mg2+ has been determined at 1.9 A resolution. Comparison with the solution structure of the enzyme, obtained in the absence of substrates, shows significant conformational changes of the LID and NMP-binding domains upon substrate binding. The ternary complex represents the state of the enzyme at the start of the backward reaction (ATP synthesis). The structure is consistent with a direct nucleophilic attack of a terminal oxygen from the acceptor ADP molecule on the beta-phosphate from the donor substrate, and both the geometry and the distribution of positive charge in the active site support the hypothesis of an associative mechanism for phosphoryl transfer.  相似文献   

11.
Genome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X(2)HX(approximately 100)(D/E)X(2)H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization. Here, we report the 2.0 A resolution X-ray structure of DesA2 determined by multiple anomalous dispersion (MAD) phasing from a Se-met derivative and refinement against diffraction data obtained on the native protein. The X-ray structure shows that DesA2 is a homodimeric protein with a four-helix bundle core flanked by five additional helices that overlay with 192 structurally equivalent amino acids in the structure of stearoyl-ACP Delta9 desaturase from castor plant with an rms difference 1.42 A. In the DesA2 crystals, one metal (likely Mn from the crystallization buffer) was bound in high occupancy at the B-site of the conserved metal binding motif, while the A-site was not occupied by a metal ion. Instead, the amino group of Lys-76 occupied this position. The relationships between DesA2 and known diiron enzymes are discussed.  相似文献   

12.
13.
A model binding site was used to investigate charge-charge interactions in molecular docking. This simple site, a small (180A(3)) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre"ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20microM and 60microM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the "naked" site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions. Whereas most of these did not bind, two did (phenol and 3-fluorocatechol). Crystal structures for these two ligands in complex with the cavity site suggest reasons for their binding. That these neutral molecules do, in fact bind, contradicts previous results in this site and, along with the alkyl amines, provides instructive false negatives that help identify weaknesses in our scoring functions. Several improvements of these are considered.  相似文献   

14.
Mycobacterium leprae protein ML2640c belongs to a large family of conserved hypothetical proteins predominantly found in mycobacteria, some of them predicted as putative S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTase). As part of a Structural Genomics initiative on conserved hypothetical proteins in pathogenic mycobacteria, we have determined the structure of ML2640c in two distinct crystal forms. As expected, ML2640c has a typical MTase core domain and binds the methyl donor substrate AdoMet in a manner consistent with other known members of this structural family. The putative acceptor substrate-binding site of ML2640c is a large internal cavity, mostly lined by aromatic and aliphatic side-chain residues, suggesting that a lipid-like molecule might be targeted for catalysis. A flap segment (residues 222-256), which isolates the binding site from the bulk solvent and is highly mobile in the crystal structures, could serve as a gateway to allow substrate entry and product release. The multiple sequence alignment of ML2640c-like proteins revealed that the central alpha/beta core and the AdoMet-binding site are very well conserved within the family. However, the amino acid positions defining the binding site for the acceptor substrate display a higher variability, suggestive of distinct acceptor substrate specificities. The ML2640c crystal structures offer the first structural glimpses at this important family of mycobacterial proteins and lend strong support to their functional assignment as AdoMet-dependent methyltransferases.  相似文献   

15.
Three glycine-rich protein genes of Arabidopsis thaliana (Atgrp-6, Atgrp-7, and Atgrp-8) that correspond to putative genes coding for pollenins (AtolnB;2, AtolnB;3, and AtolnB;4, respectively) are expressed predominantly in the anthers and, more specifically, in the tapetum layer. Tapetal cells are responsible for nutrition of developing pollen grains and show some functional similarities to nematode feeding sites (NFS) induced in plant roots by sedentary parasitic nematodes. The aim of this study was to analyze promoter activity of the Atgrp genes in NFS. Transformed Arabidopsis plants containing a promoter-ß-glucuronidase (gus) fusion of the Atgrp-7 gene were inoculated with the root-knot nematode Meloidogyne incognita and the cyst nematode Heterodera schachtii. GUS assays were performed at different time points after infection. Histochemical analysis revealed an up-regulation of Atgrp-7-gus expression 3 days after inoculation in the feeding sites of both nematodes. Maximal Atgrp-7-gus staining levels in NFS were observed 1 week after nematode infection.  相似文献   

16.
The paper proposes a hybrid system based approach for modelling of intracellular networks and introduces a restricted subclass of hybrid systems – HSM – with an objective of still being able to provide sufficient power for the modelling of biological systems, while imposing some restrictions that facilitate analysis of systems described by such models.  相似文献   

17.
18.
The Pyrococcus horikoshii OT3 genome contains a gene (PH0601 or nikR) encoding a protein (PhNikR) that shares 33.8% amino acid sequence identity with Escherichia coli nickel responsive repressor NikR (EcNikR), including many residues that are functionally important in the E.coli ortholog. We succeeded in crystallization and structural characterization of PhNikR in the apo form and two nickel bound forms that exhibit different conformations, open and closed. Moreover, we have identified a putative "low-affinity" nickel-binding pocket in the closed form. This binding site has unusual nickel coordination and exhibits high sensitivity to phosphate in the crystal structure. Analysis of the PhNikR structures and structure-based mutational studies with EcNikR reveals a plausible mechanism of nickel-dependent promoter recognition by the NikR family of proteins.  相似文献   

19.
The genome of Pyrococcus abyssi contains two open reading frames encoding proteins which had been previously predicted to be DNA ligases, Pab2002 and Pab1020. We show that while the former is indeed a DNA ligase, Pab1020 had no effect on the substrate deoxyoligo-ribonucleotides tested. Instead, Pab1020 catalyzes the nucleotidylation of oligo-ribonucleotides in an ATP-dependent reaction, suggesting that it is an RNA ligase. We have solved the structure of Pab1020 in complex with the ATP analog AMPPNP by single-wavelength anomalous dispersion (SAD), elucidating a structure with high structural similarity to the catalytic domains of two RNA ligases from the bacteriophage T4. Additional carboxy-terminal domains are also present, and one of these mediates contacts with a second protomer, which is related by noncrystallographic symmetry, generating a homodimeric structure. These C-terminal domains are terminated by short domain swaps which themselves end within 5 Å of the active sites of the partner molecules. Additionally, we show that the protein is indeed capable of circularizing RNA molecules in an ATP-dependent reaction. These structural and biochemical results provide an insight into the potential physiological roles of Pab1020.  相似文献   

20.
Previously, we applied single-molecule force spectroscopy to detect and locate interactions within the functional Na+/H+ antiporter NhaA from Escherichia coli. It was observed that the binding of the inhibitor 2-aminoperimidine established interactions different from those introduced by the binding of the native ligand. To understand the inhibitory mechanism of the inhibitor, we applied single-molecule dynamic force spectroscopy to reconstruct the energy landscape of NhaA. Dynamic force spectroscopy revealed that the energy landscape of the antiporter remained mainly unchanged except for the energy barrier of the functionally important transmembrane α-helix IX. Inhibitor binding set this domain into a newly formed deep and narrow energy minimum that kinetically stabilized α-helix IX and reduced its conformational entropy. The entropy reduction of α-helix IX is thought to inhibit its functionally important structural flexibility, while the deeper energy barrier shifted the population of active antiporters towards inhibited antiporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号