首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial patterning of proteins in bacteria plays an important role in many processes, from cell division to chemotaxis. In the asymmetrically dividing bacteria Caulobacter crescentus, a scaffolding protein, PopZ, localizes to both poles and aids the differential patterning of proteins between mother and daughter cells during division. Polar patterning of misfolded proteins in Escherichia coli has also been shown, and likely plays an important role in cellular ageing. Recent experiments on both of the above systems suggest that the presence of chromosome free regions along with protein multimerization may be a mechanism for driving the polar localization of proteins. We have developed a simple physical model for protein localization using only these two driving mechanisms. Our model reproduces all the observed patterns of PopZ and misfolded protein localization--from diffuse, unipolar, and bipolar patterns and can also account for the observed patterns in a variety of mutants. The model also suggests new experiments to further test the role of the chromosome in driving protein patterning, and whether such a mechanism is responsible for helping to drive the differentiation of the cell poles.  相似文献   

2.
Spatial complexity and control of a bacterial cell cycle   总被引:3,自引:0,他引:3  
A major breakthrough in understanding the bacterial cell cycle is the discovery that bacteria exhibit a high degree of intracellular organization. Chromosomal loci and many protein complexes are positioned at particular subcellular sites. In this review, we examine recently discovered control mechanisms that make use of dynamically localized protein complexes to orchestrate the Caulobacter crescentus cell cycle. Protein localization, notably of signal transduction proteins, chromosome partition proteins, and proteases, serves to coordinate cell division with chromosome replication and cell differentiation. The developmental fate of daughter cells is decided before completion of cytokinesis, via the early establishment of cell polarity by the distribution of activated signaling proteins, bacterial cytoskeleton, and landmark proteins.  相似文献   

3.
Cell polarity: the ups and downs of the Par6/aPKC complex   总被引:8,自引:0,他引:8  
A signaling complex in which atypical protein kinase C associates with a regulatory protein, Par6, plays an essential role in establishing cell polarity. Recent studies in organisms ranging from worms to mammals have highlighted some of the conserved mechanisms by which the assembly, localization and activity of this complex are regulated. Recent work is also beginning to unravel how this complex acts in concert with additional molecular complexes to establish and maintain polarity.  相似文献   

4.
By funneling protein effectors through needle complexes located on the cellular membrane, bacteria are able to infect host cells during type III secretion events. The spatio-temporal mechanisms through which these events occur are however not fully understood, due in part to the inherent challenges in tracking single molecules moving within an intracellular medium. As a result, theoretical predictions of secretion times are still lacking. Here we provide a model that quantifies, depending on the transport characteristics within bacterial cytoplasm, the amount of time for a protein effector to reach either of the available needle complexes. Using parameters from Shigella flexneri we are able to test the role that translocators might have to activate the needle complexes and offer semi-quantitative explanations of recent experimental observations.  相似文献   

5.
The successful transmission of complete genomes from mother to daughter cells during cell divisions requires the structural re-organization of chromosomes into individualized and compact structures that can be segregated by mitotic spindle microtubules. Multi-subunit protein complexes named condensins play a central part in this chromosome condensation process, but the mechanisms behind their actions are still poorly understood. An increasing body of evidence suggests that, in addition to their role in shaping mitotic chromosomes, condensin complexes have also important functions in directing the three-dimensional arrangement of chromatin fibers within the interphase nucleus. To fulfill their different functions in genome organization, the activity of condensin complexes and their localization on chromosomes need to be strictly controlled. In this review article, we outline the regulation of condensin function by phosphorylation and other posttranslational modifications at different stages of the cell cycle. We furthermore discuss how these regulatory mechanisms are used to control condensin binding to specific chromosome domains and present a comprehensive overview of condensin’s interaction partners in these processes.  相似文献   

6.
Subcellular biomolecular localization is critical for the metabolic and structural properties of the cell. The functional implications of the spatiotemporal distribution of protein complexes during the bacterial cell cycle have long been acknowledged; however, the molecular mechanisms for generating and maintaining their dynamic localization in bacteria are not completely understood. Here we demonstrate that the trans‐envelope Tol–Pal complex, a widely conserved component of the cell envelope of Gram‐negative bacteria, is required to maintain the polar positioning of chemoreceptor clusters in Escherichia coli. Localization of the chemoreceptors was independent of phospholipid composition of the membrane and the curvature of the cell wall. Instead, our data indicate that chemoreceptors interact with components of the Tol–Pal complex and that this interaction is required to polarly localize chemoreceptor clusters. We found that disruption of the Tol–Pal complex perturbs the polar localization of chemoreceptors, alters cell motility, and affects chemotaxis. We propose that the E. coli Tol–Pal complex restricts mobility of the chemoreceptor clusters at the cell poles and may be involved in regulatory mechanisms that co‐ordinate cell division and segregation of the chemosensory machinery.  相似文献   

7.
8.
9.
Polar explorations Recent insights into the polarity of bacterial proteins   总被引:1,自引:0,他引:1  
It is now well established in the microbiology community that the spatial organization of bacterial cells is quite complex with proteins and protein complexes localized to specific subcellular regions. Unresolved for the most part, however, are the mechanisms by which asymmetric proteins are localized. A variety of mechanisms are utilized to achieve polarity in bacteria. In this article, we focus on recent findings that support specific mechanisms for the establishment of polarity in rod shaped bacteria.  相似文献   

10.
Specificity of transduction events is controlled at the molecular level by scaffold, anchoring, and adaptor proteins, which position signaling enzymes at proper subcellular localization. This allows their efficient catalytic activation and accurate substrate selection. A-kinase anchoring proteins (AKAPs) are group of functionally related proteins that compartmentalize the cAMP-dependent protein kinase (PKA) and other signaling enyzmes at precise subcellular sites in close proximity to their physiological substrate(s) and favor specific phosphorylation events. Recent evidence suggests that AKAP transduction complexes play a key role in regulating G protein-coupled receptor (GPCR) signaling. Regulation can occur at multiple levels because AKAPs have been shown both to directly modulate GPCR function and to act as downstream effectors of GPCR signaling. In this minireview, we focus on the molecular mechanisms through which AKAP-signaling complexes modulate GPCR transduction cascades.  相似文献   

11.
Specificity of transduction events is controlled at the molecular level by scaffold, anchoring, and adaptor proteins, which position signaling enzymes at proper subcellular localization. This allows their efficient catalytic activation and accurate substrate selection. A-kinase anchoring proteins (AKAPs) are group of functionally related proteins that compartmentalize the cAMP-dependent protein kinase (PKA) and other signaling enyzmes at precise subcellular sites in close proximity to their physiological substrate(s) and favor specific phosphorylation events. Recent evidence suggests that AKAP transduction complexes play a key role in regulating G protein-coupled receptor (GPCR) signaling. Regulation can occur at multiple levels because AKAPs have been shown both to directly modulate GPCR function and to act as downstream effectors of GPCR signaling. In this minireview, we focus on the molecular mechanisms through which AKAP-signaling complexes modulate GPCR transduction cascades.  相似文献   

12.
The hepatitis B virus X (HBX) protein has been implicated in both hepatitis B virus-related pathogenesis and also in diverse cellular processes. The diversity of its activities may be mediated through its interaction with cellular organelles. However no clearly defined subcellular localization of HBX is available. We report here the localization of HBX in the proteasome complexes using green fluorescent protein tag. A new proteasome-targeting domain has also been defined in HBX by deletion study. Furthermore, a functional role of HBX in the cellular processes mediated by the proteasome complexes has been suggested by its cell cycle-independent localization in the proteasome. Further analysis of the functional role of HBX in the proteasome complexes should provide more information on the underlying mechanism of HBX ativities.  相似文献   

13.
B G McLean  J Zupan    P C Zambryski 《The Plant cell》1995,7(12):2101-2114
Tobacco mosaic virus movement protein P30 complexes with genomic viral RNA for transport through plasmodesmata, the plant intercellular connections. Although most research with P30 focuses on its targeting to and gating of plasmodesmata, the mechanisms of P30 intracellular movement to plasmodesmata have not been defined. To examine P30 intracellular localization, we used tobacco protoplasts, which lack plasmodesmata, for transfection with plasmids carrying P30 coding sequences under a constitutive promoter and for infection with tobacco mosaic virus particles. In both systems, P30 appears as filaments that colocalize primarily with microtubules. To a lesser extent, P30 filaments colocalize with actin filaments, and in vitro experiments suggested that P30 can bind directly to actin and tubulin. This association of P30 with cytoskeletal elements may play a critical role in intracellular transport of the P30-viral RNA complex through the cytoplasm to and possibly through plasmodesmata.  相似文献   

14.
The bacterial dcw cluster is a group of genes involved in cell division and peptidoglycan synthesis. Comparison of the cluster across several bacterial genomes shows that its gene content and its gene order are conserved in distant bacterial lineages and, moreover, that, being most conserved in rod-shaped bacteria, the degree of conservation relates to bacterial morphology. We propose a model in which the selective pressure to maintain the cluster arises from the need to efficiently coordinate the processes of elongation and septation in rod-shaped bacteria. Gene order in the dcw cluster would be conserved as a result of mechanisms comprising: (i) a limited amount of peptidoglycan precursors required both for septation and elongation of the wall; (ii) co-translational assembly of the protein complexes involved in cell division and in the synthesis of the peptidoglycan precursors; and (iii) alternation in the cellular localization of the assembled complexes to participate either in the synthesis of the septal peptidoglycan and division, or in the synthesis of the lateral wall. The name genomic channeling is proposed for this model as it involves a genomic arrangement that could facilitate the assembly of specific protein complexes and their subsequent conveyance to specific locations in the crowded cytoplasm and the envelope.  相似文献   

15.

Background  

Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph.  相似文献   

16.
DOCK180 protein plays a key role during development, cell motility, and phagocytosis. It forms a complex with another protein ELMO, and this complex acts as a guanine nucleotide exchange factor (GEF) for Rac. However, DOCK180-containing complexes have not been purified by unbiased biochemical approaches, and the nature and subcellular localization of these complexes remain unclear. Here, we show that a large fraction of endogenous DOCK180 is present as a 700kDa nuclear complex with ELMO proteins. In addition, this nuclear DOCK180/ELMO complex has functional Rac-GEF activity. Furthermore, endogenous DOCK180 could be found in complexes with different ELMO isoforms (ELMO1, 2 or 3) in different cell lines, depending on the ELMO isoforms expressed. These studies suggest that DOCK180 may associate with different ELMO proteins to form cell-type specific complexes and may have functions in both the nucleus and the cytoplasm.  相似文献   

17.
18.
19.
Using highly purified proteins, we have identified intermediate reactions that lead to the assembly of molecular chaperone complexes with wild-type or mutant p53R175H protein. Hsp90 possesses higher affinity for wild-type p53 than for the conformational mutant p53R175H. The presence of Hsp90 in a complex with wild-type p53 inhibits the binding of Hsp40 and Hsc70 to p53, consequently preventing the formation of wild-type p53-multiple chaperone complexes. The conformational mutant p53R175H can form a stable heterocomplex with Hsp90 only in the presence of Hsc70, Hsp40, Hop and ATP. The anti-apoptotic factor Bag-1 can dissociate Hsp90 from a pre- assembled complex wild-type p53 protein, but it cannot dissociate a pre-assembled p53R175H-Hsp40- Hsc70-Hop-Hsp90 heterocomplex. The results presented here provide possible molecular mechanisms that can help to explain the observed in vivo role of molecular chaperones in the stabilization and cellular localization of wild-type and mutant p53 protein.  相似文献   

20.
Localization of kinases and other signalling molecules at discrete cellular locations is often an essential component of signal transduction in eukaryotes. Caulobacter crescentus is a small, single-celled bacterium that presumably lacks intracellular organelles. Yet in Caulobacter, the subcellular distribution of several two-component signal transduction proteins involved in the control of polar morphogenesis and cell cycle progression changes from a fairly dispersed distribution to a tight accumulation at one or both poles in a spatial and temporal pattern that is reproduced during each cell cycle. This cell cycle-dependent choreography suggests that similarly to what happens in eukaryotes, protein localization provides a means of modulating signal transduction in bacteria. Recent studies have provided important insights into the biological role and the mechanisms for the differential localization of these bacterial signalling proteins during the Caulobacter cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号