首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Snake venoms can contain a variety of well-studied neurotoxins, especially nicotinic acetylcholine receptor inhibitor, normally called postsynaptic neurotoxin. Karlsson first reported muscarinic acetylcholine receptor (mAChR) inhibitor from snake venom. In a previous study in our laboratory, we found a mAChR inhibitor from Naja naja sputatrix venom that bound to rat brain synaptosomes. Brain synaptosomes contain all subtypes of mAChRs, and thus the exact selectivity of the inhibitor could not be determined. mAChR inhibitor from N. naja sputatrix venom was purified and the binding to all human mAChR subtypes (M1, M2, M3, M4, and M5) was investigated and is reported in this communication. The inhibitor bound to all subtypes of the human mAChR, but showed considerably high selectivity for the M5 subtype. It was also found that the reduction of disulfide bonds in the inhibitor eliminated the binding to the mAChR. This suggests that a specific tertiary conformation maintained by disulfide bonds is essential for binding to the mAChR. An oligo peptide, QIHDNCYNE, comparable to a part of the inhibitor molecule, was synthesized and studied for its binding to the mAChR. The synthetic peptide did not show any binding activity, suggesting this portion of the inhibitor molecule is not involved in mAChR binding. The selective binding of the M5 mAChR subtype to antagonists has not yet been reported. Therefore, the purified inhibitor reported in this communication may be a useful tool to clarify the mechanism of muscarinic cholinergic transmission.  相似文献   

2.
This Letter describes a chemical lead optimization campaign directed at VU0238429, the first M5-preferring positive allosteric modulator (PAM), discovered through analog work around VU0119498, a pan Gq mAChR M1, M3, M5 PAM. An iterative library synthesis approach delivered the first selective M5 PAM (no activity at M1–M4 @ 30 μM), and an important tool compound to study the role of M5 in the CNS.  相似文献   

3.
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ~50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.  相似文献   

4.
Many G protein-coupled receptors (GPCRs) possess allosteric binding sites distinct from the orthosteric site utilized by their cognate ligands, but most GPCR allosteric modulators reported to date lack signaling efficacy in their own right. McN-A-343 (4-(N-(3-chlorophenyl)carbamoyloxy)-2-butynyltrimethylammonium chloride) is a functionally selective muscarinic acetylcholine receptor (mAChR) partial agonist that can also interact allosterically at the M(2) mAChR. We hypothesized that this molecule simultaneously utilizes both an allosteric and the orthosteric site on the M(2) mAChR to mediate these effects. By synthesizing progressively truncated McN-A-343 derivatives, we identified two, which minimally contain 3-chlorophenylcarbamate, as pure allosteric modulators. These compounds were positive modulators of the orthosteric antagonist N-[(3)H]methylscopolamine, but in functional assays of M(2) mAChR-mediated ERK1/2 phosphorylation and guanosine 5'-3-O-([(35)S]thio)triphosphate binding, they were negative modulators of agonist efficacy. This negative allosteric effect was diminished upon mutation of Y177A in the second extracellular (E2) loop of the M(2) mAChR that is known to reduce prototypical allosteric modulator potency. Our results are consistent with McN-A-343 being a bitopic orthosteric/allosteric ligand with the allosteric moiety engendering partial agonism and functional selectivity. This finding suggests a novel and largely unappreciated mechanism of "directed efficacy" whereby functional selectivity may be engendered in a GPCR by utilizing an allosteric ligand to direct the signaling of an orthosteric ligand encoded within the same molecule.  相似文献   

5.
This letter describes the further exploration of two series of M1 allosteric agonists, TBPB and VU0357017, previously reported from our lab. Within the TPBP scaffold, either electronic or steric perturbations to the central piperidine ring led to a loss of selective M1 allosteric agonism and afforded pan-mAChR antagonism, which was demonstrated to be mediated via the orthosteric site. Additional SAR around a related M1 allosteric agonist family (VU0357017) identified similar, subtle ‘molecular switches’ that modulated modes of pharmacology from allosteric agonism to pan-mAChR orthosteric antagonism. Therefore, all of these ligands are best classified as bi-topic ligands that possess high affinity binding at an allosteric site to engender selective M1 activation, but all bind, at higher concentrations, to the orthosteric ACh site, leading to non-selective orthosteric site binding and mAChR antagonism.  相似文献   

6.
We have investigated how the cholinergic system of epidermal keratinocytes (KC) controls migratory function of these cells. Several molecular subtypes of muscarinic acetylcholine receptors (mAChRs) have been detected in KC. Early results suggested that M(4) is the predominant mAChR regulating cell motility. To determine muscarinic effects on lateral migration of KC, we used an agarose gel keratinocyte outgrowth system (AGKOS) which provides for measurements of the response of large cell populations (> 10(4) cells). Muscarine produced a dose-dependent stimulatory effect on cell migration (p < 0.05). This activity was abolished by atropine, which decreased migration distance when given alone. To identify the mAChR subtype(s) mediating these muscarinic effects, we substituted atropine with subtype-selective antagonists. Tropicamide (M(4)-selective) was more effective at decreasing the migration distance than pirenzepine and 4-DAMP at nanomolar concentrations. We then compared lateral migration of KC obtained from M(4) mAChR knockout mice with that of wild-type murine KC, using AGKOS. In the absence of M(4) mAChR, the migration distance of KC was significantly (p < 0.05) decreased. These results indicate that the M(4) mAChR plays a central role in mediating cholinergic control of keratinocyte migration by endogenous acetylcholine produced by these cells.  相似文献   

7.
The activation of the muscarinic acetylcholine receptor (mAChR) family, consisting of five subtypes (M1-M5), produces a variety of physiological effects throughout the central nervous system. However, the role of each individual subtype remains poorly understood. To further elucidate signal transduction pathways for specific subtypes, we used the most divergent portion of the subtypes, the intracellular third (i3) loop, as bait to identify interacting proteins. Using a brain pull-down assay, we identify elongation factor 1A2 (eEF1A2) as a specific binding partner to the i3 loop of M4, and not to M1 or M2. In addition, we demonstrate a direct interaction between these proteins. In the rat striatum, the M4 mAChR colocalizes with eEF1A2 in the soma and neuropil. In PC12 cells, endogenous eEF1A2 co-immunoprecipitates with the endogenous M4 mAChR, but not with the endogenous M1 mAChR. In our in vitro model, M4 dramatically accelerates nucleotide exchange of eEF1A2, a GTP-binding protein. This indicates the M4 mAChR is a guanine exchange factor for eEF1A2. eEF1A2 is an essential GTP-binding protein for protein synthesis. Thus, our data suggest a novel role for M4 in the regulation of protein synthesis through its interaction with eEF1A2.  相似文献   

8.
9.
Muscarinic acetylcholine receptors mediate transmission of an extracellular signal represented by released acetylcholine to neuronal or effector cells. There are five subtypes of closely homologous muscarinic receptors which are coupled by means of heterotrimeric G-proteins to a variety of signaling pathways resulting in a multitude of target cell effects. Endogenous agonist acetylcholine does not discriminate among individual subtypes and due to the close homology of the orthosteric binding site the same holds true for most of exogenous agonists. In addition to the classical binding site muscarinic receptors have one or more allosteric binding sites at extracellular domains. Binding of allosteric modulators induces conformational changes in the receptor that result in subtype-specific changes in orthosteric binding site affinity for both muscarinic agonists and antagonists. This overview summarizes our recent experimental effort in investigating certain aspects of M2 muscarinic receptor functioning concerning i) the molecular determinants that contribute to the binding of allosteric modulators, ii) G-protein coupling specificity and subsequent cellular responses and iii) possible functional assays that exploit the unique properties of allosteric modulators for characterization of muscarinic receptor subtypes in intact tissue. A detailed knowledge of allosteric properties of muscarinic receptors is required to permit drug design that will modulate signal transmission strength of specific muscarinic receptor subtypes. Furthermore, allosteric modulation of signal transmission strength is determined by cooperativity rather than concentration of allosteric modulator and thus reduces the danger of overdose.  相似文献   

10.
An inhibitor to the muscarinic acetylcholine receptor (mAChR) was purified from the venom of Crotalus atrox (western diamondback rattlesnake). The inhibitor was found to be a 30-kDa homodimer protein with phospholipase A2 activity. In order to determine the subtype selectivity of the purified inhibitor, the inhibitory effect on the binding of two orthosteric antagonists, [3H]quinuclidinyl benzilate ([3H]QNB) and [3H]N-methylscopolamine methyl chloride ([3H]NMS), to five subtypes of cloned human mAChR was tested. The purified inhibitor reduced the binding of [3H]QNB and/or [3H]NMS to all subtypes of the mAChR while showing the highest inhibitory effect on the M5 subtype. The Kd values of the receptors for the antagonists were increased in the presence of the inhibitor; however, the Bmax values were not changed. The effects of the purified inhibitor on the dissociation of [3H]NMS from the receptors were also investigated. Dissociation of the antagonist was remarkably slowed down by addition of the inhibitor. These findings may suggest an allosteric action of the purified inhibitor. In addition, the present study indicates that the presence of mAChR inhibitors is quite common in snake venoms.  相似文献   

11.
Benzylquinolone carboxylic acid (BQCA) is an unprecedented example of a selective positive allosteric modulator of acetylcholine at the M1 muscarinic acetylcholine receptor (mAChR). To probe the structural basis underlying its selectivity, we utilized site-directed mutagenesis, analytical modeling, and molecular dynamics to delineate regions of the M1 mAChR that govern modulator binding and transmission of cooperativity. We identified Tyr-852.64 in transmembrane domain 2 (TMII), Tyr-179 and Phe-182 in the second extracellular loop (ECL2), and Glu-3977.32 and Trp-4007.35 in TMVII as residues that contribute to the BQCA binding pocket at the M1 mAChR, as well as to the transmission of cooperativity with the orthosteric agonist carbachol. As such, the BQCA binding pocket partially overlaps with the previously described “common” allosteric site in the extracellular vestibule of the M1 mAChR, suggesting that its high subtype selectivity derives from either additional contacts outside this region or through a subtype-specific cooperativity mechanism. Mutation of amino acid residues that form the orthosteric binding pocket caused a loss of carbachol response that could be rescued by BQCA. Two of these residues (Leu-1023.29 and Asp-1053.32) were also identified as indirect contributors to the binding affinity of the modulator. This new insight into the structural basis of binding and function of BQCA can guide the design of new allosteric ligands with tailored pharmacological properties.  相似文献   

12.
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of tool compound VU0409106 is described in this Letter. VU0409106 is a potent and selective negative allosteric modulator of mGlu5 that binds at the known allosteric binding site and demonstrates good CNS exposure following intraperitoneal dosing in mice. VU0409106 also proved efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists as well as clinically efficacious anxiolytics.  相似文献   

13.
Insect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases. By using electrophysiological, biochemichal, in vivo toxicological techniques together with calcium imaging, binding studies and in silico docking, we have shown that DEET, at low concentrations, interacts with high affinity with insect M1/M3 mAChR allosteric site potentiating agonist effects on mAChRs coupled to phospholipase C second messenger pathway. This increases the anticholinesterase activity of the carbamate propoxur through calcium-dependent regulation of acetylcholinesterase. At high concentrations, DEET interacts with low affinity on distinct M1/M3 mAChR site, counteracting the potentiation. Similar dose-dependent dual effects of DEET have also been observed at synaptic mAChR level. Additionally, binding and in silico docking studies performed on human M1 and M3 mAChR subtypes indicate that DEET only displays a low affinity antagonist profile on these M1/M3 mAChRs. These results reveal a selective high affinity positive allosteric site for DEET in insect mAChRs. Finally, bioassays conducted on Aedes aegypti confirm the synergistic interaction between DEET and propoxur observed in vitro, resulting in a higher mortality of mosquitoes. Our findings reveal an unusual allosterically potentiating action of the repellent DEET, which involves a selective site in insect. These results open exciting research areas in public health particularly in the control of the pyrethroid-resistant insect-vector borne diseases. Mixing low doses of DEET and a non-pyrethroid insecticide will lead to improvement in the efficiency treatments thus reducing both the concentration of active ingredients and side effects for non-target organisms. The discovery of this insect specific site may pave the way for the development of new strategies essential in the management of chemical use against resistant mosquitoes.  相似文献   

14.
15.
Although M1-M4 muscarinic acetylcholine receptors (mAChRs) in HEK-293 cells internalize on agonist stimulation, only M1, M3, and M4 but not M2 mAChRs recycle to the plasma membrane. To investigate the functional consequences of this phenomenon, we compared desensitization and resensitization of M2 versus M4 mAChRs. Treatment with 1 mM carbachol for 1 h at 37 degrees C reduced numbers of cell surface M2 and M4 mAChRs by 40-50% and M2 and M4 mAChR-mediated inhibition of adenylyl cyclase, intracellular Ca2+ concentration ([Ca2+]i) increases, and phospholipase C (PLC) activation by 60-70%. Receptor-mediated inhibition of adenylyl cyclase and [Ca2+]i increases significantly resensitized within 3 h. However, M4 but not M2 mAChR-mediated PLC activation resensitized. At 16 degrees C, M2 mAChR-mediated [Ca2+]i increases and PLC stimulation desensitized to a similar extent as at 37 degrees C. However, at 16 degrees C, where M2 mAChR internalization is negligible, both M2 mAChR responses resensitized, demonstrating that M2 mAChR resensitization proceeds at the plasma membrane. Examination of M2 mAChR responses following inactivation of cell surface mAChRs by quinuclidinyl benzilate revealed substantial receptor reserve for coupling to [Ca2+]i increases but not to PLC. We conclude that M2 mAChR internalization induces long-lasting PLC desensitization predominantly because receptor loss is not compensated for by receptor recycling or receptor reserve.  相似文献   

16.
Muscarinic receptors modulate hippocampal activity in two main ways: inhibition of synaptic activity and enhancement of excitability of hippocampal cells. Due to the lack of pharmacological tools, it has not been possible to identify the individual receptor subtypes that mediate the specific physiological actions that underlie these forms of modulation. Light and electron microscopic immunocytochemistry using subtype-specific antibodies was combined with lesioning techniques to examine the pre- and postsynaptic location of m1-m4 mAChR at identified hippocampus synapses. The results revealed striking differences among the subtypes, and suggested different ways that the receptors modulate excitatory and inhibitory transmission in distinct circuits. Complementary physiological studies using m1-toxin investigated the modulatory effects of this subtype on excitatory transmission in more detail. The implications of these data for understanding the functional roles of these subtypes are discussed.  相似文献   

17.
The Monod-Wyman-Changeux (MWC) model was initially proposed to describe the allosteric properties of regulatory enzymes and subsequently extended to receptors. Yet despite GPCRs representing the largest family of receptors and drug targets, no study has systematically evaluated the MWC mechanism as it applies to GPCR allosteric ligands. We reveal how the recently described allosteric modulator, benzyl quinolone carboxylic acid (BQCA), behaves according to a strict, two-state MWC mechanism at the M1 muscarinic acetylcholine receptor (mAChR). Despite having a low affinity for the M1 mAChR, BQCA demonstrated state dependence, exhibiting high positive cooperativity with orthosteric agonists in a manner that correlated with efficacy but negative cooperativity with inverse agonists. The activity of BQCA was significantly increased at a constitutively active M1 mAChR but abolished at an inactive mutant. Interestingly, BQCA possessed intrinsic signaling efficacy, ranging from near-quiescence to full agonism depending on the coupling efficiency of the chosen intracellular pathway. This latter cellular property also determined the difference in magnitude of positive cooperativity between BQCA and the orthosteric agonist, carbachol, across pathways. The lack of additional, pathway-biased, allosteric modulation by BQCA was confirmed in genetically engineered yeast strains expressing different chimeras between the endogenous yeast G(pa1) protein and human Gα subunits. These findings define a chemical biological framework that can be applied to the study and classification of allosteric modulators across different GPCR families.  相似文献   

18.
Journal of Evolutionary Biochemistry and Physiology - The effects of VU 0238429, an allosteric modulator of muscarinic acetylcholine (ACh) M5 receptor, on the amplitude and temporal parameters of...  相似文献   

19.
We designed and synthesized novel N-sulfonyl-7-azaindoline derivatives as selective M4 muscarinic acetylcholine receptor agonists. Modification of the N-carbethoxy piperidine moiety of compound 2, an M4 muscarinic acetylcholine receptor (mAChR)-preferring agonist, led to compound 1, a selective M4 mAChR agonist. Compound 1 showed a highly selective M4 mAChR agonistic activity with weak hERG inhibition in vitro. A pharmacokinetic study of compound 1 in vivo revealed good bioavailability and brain penetration in rats. Compound 1 reversed methamphetamine-induced locomotor hyperactivity in rats (1–10 mg/kg, po).  相似文献   

20.
T Kubo  H Bujo  I Akiba  J Nakai  M Mishina  S Numa 《FEBS letters》1988,241(1-2):119-125
Chimaeric muscarinic acetylcholine receptors (mAChR) in which corresponding portions of mAChR I and mAChR II are replaced with each other have been produced in Xenopus oocytes by expression of cDNA constructs encoding them. Functional analysis of the chimaeric mAChRs indicates that a region mostly comprising the putative cytoplasmic portion between the proposed transmembrane segments V and VI is involved in selective coupling of mAChR I and mAChR II with different effector systems. In contrast, the exchange of this region between mAChR I and mAChR II does not significantly affect the antagonist binding properties of the two mAChR subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号