首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase.Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques.Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry.Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary.  相似文献   

2.
3.
We examined the degree to which ventilatory sensitivity to rising body temperature (the slope of the regression line relating ventilation and body temperature) is altered by restoration of arterial PCO(2) to the eucapnic level during prolonged exercise in the heat. Thirteen subjects exercised for ~60 min on a cycle ergometer at 50% of peak O(2) uptake with and without inhalation of CO(2)-enriched air. Subjects began breathing CO(2)-enriched air at the point that end-tidal Pco(2) started to decline. Esophageal temperature (T(es)), minute ventilation (V(E)), tidal volume (V(T)), respiratory frequency (f(R)), respiratory gases, middle cerebral artery blood velocity, and arterial blood pressure were recorded continuously. When V(E), V(T), f(R), and ventilatory equivalents for O(2) uptake (V(E)/VO(2)) and CO(2) output (V(E)/VCO(2)) were plotted against changes in T(es) from the start of the CO(2)-enriched air inhalation (ΔT(es)), the slopes of the regression lines relating V(E), V(T), V(E)/VO(2), and V(E)/VCO(2) to ΔT(es) (ventilatory sensitivity to rising body temperature) were significantly greater when subjects breathed CO(2)-enriched air than when they breathed room air (V(E): 19.8 ± 10.3 vs. 8.9 ± 6.7 l·min(-1)·°C(-1), V(T): 18 ± 120 vs. -81 ± 92 ml/°C; V(E)/VO(2): 7.4 ± 5.5 vs. 2.6 ± 2.3 units/°C, and V(E)/VCO(2): 7.6 ± 6.6 vs. 3.4 ± 2.8 units/°C). The increase in Ve was accompanied by increases in V(T) and f(R). These results suggest that restoration of arterial PCO(2) to nearly eucapnic levels increases ventilatory sensitivity to rising body temperature by around threefold.  相似文献   

4.
5.
 We advocate the concept of an arbuscular mycorrhiza (AM) as a temporally and spatially complex symbiosis representing a suite of hosts and fungi, as against the more traditional "dual organism" view. We use the hierarchical framework presented in Fig. 1 as a basis for organizing many unanswered questions, and several questions that have not been asked, concerning the role of AM in responses to elevated atmospheric CO2. We include the following levels: plant host, plant population, plant community, functional group and ecosystem. Measurements of the contributions of AM fungi at the various levels require the use of different response variables. For example, hyphal nutrient translocation rates or percent AM root infection may be important measures at the individual plant level, but hyphal biomass or glomalin production and turnover are more relevant at the ecosystem level. There is a discrepancy between our knowledge of the multifaceted role of AM fungi in plant and ecosystem ecology and most of the current research aimed at elucidating the importance of this symbiosis in global-change scenarios. Our framework for more integrated and multifactorial research on mycorrhizal involvement in regulating CO2 responses may also serve to enhance communication between researchers working at different scales on large global-change ecosystem projects. Accepted: 12 February 1999  相似文献   

6.
Biomineralization is widespread among photosynthetic organisms in the ocean, in inland waters and on land. The most quantitatively important biogeochemical role of land plants today in biomineralization is silica deposition in vascular plants, especially grasses. Terrestrial plants also increase the rate of weathering, providing the soluble substrates for biomineralization on land and in water bodies, a role that has had global biogeochemical impacts since the Devonian. The dominant photosynthetic biomineralizers in today's ocean are diatoms and radiolarians depositing silica and coccolithophores and foraminifera depositing calcium carbonate. Abiotic precipitation of silica from supersaturated seawater in the Precambrian preceded intracellular silicification dominated by sponges, then radiolarians and finally diatoms, with successive declines in the silicic acid concentration in the surface ocean, resulting in some decreases in the extent of silicification and, probably, increases in the silicic acid affinity of the active influx mechanisms. Calcium and bicarbonate concentrations in the surface ocean have generally been supersaturating with respect to the three common calcium carbonate biominerals through geological time, allowing external calcification as well as calcification in compartments within cells or organisms. The forms of calcium carbonate in biominerals, and presumably the evolution of the organisms that produce them, have been influenced by abiotic variations in calcium and magnesium concentrations in seawater, and calcium carbonate deposition has probably also been influenced by carbon dioxide concentration whose variations are in part biologically determined. Overall, there has been less biological feedback on the availability of substrates for calcification than is the case for silicification.  相似文献   

7.
The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO2 concentration (Ca) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response of net primary productivity (NPP) to elevated CO2 (eCa) will increase with rising temperature and will be substantially larger in warm tropical forests than in cold boreal forests. We tested these model predictions against evidence from eCa experiments by carrying out two meta‐analyses. Firstly, we tested for an interaction effect on growth responses in factorial eCa × temperature experiments. This analysis showed a positive, but nonsignificant interaction effect (95% CI for above‐ground biomass response = ?0.8, 18.0%) between eCa and temperature. Secondly, we tested field‐based eCa experiments on woody plants across the globe for a relationship between the eCa effect on plant biomass and mean annual temperature (MAT). This second analysis showed a positive but nonsignificant correlation between the eCa response and MAT. The magnitude of the interactions between CO2 and temperature found in both meta‐analyses were consistent with model predictions, even though both analyses gave nonsignificant results. Thus, we conclude that it is not possible to distinguish between the competing hypotheses of no interaction vs. an interaction based on Rubisco kinetics from the available experimental database. Experiments in a wider range of temperature zones are required. Until such experimental data are available, model predictions should aim to incorporate uncertainty about this interaction.  相似文献   

8.
Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in increased water use and decreased water use efficiency.  相似文献   

9.
To identify the most temperature-sensitive steps in the energy production pathways, we measured the thermal sensitivity of mitochondrial oxidative phosphorylation (OXPHOS), as well as that of the individual steps in this process in rat heart mitochondria. OXPHOS measured in the presence of pyruvate+malate as substrates have an unusually high thermal sensitivity between 5 and 15 °C. Furthermore, the thermal sensitivity of OXPHOS correlates with the thermal sensitivity of pyruvate dehydrogenase between 5 and 35 °C. Pyruvate dehydrogenase is a potential control point for pyruvate-supported mitochondrial respiration below physiological temperature in rat heart.  相似文献   

10.
Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO(2)] conditions (700 versus 370 μmol mol(-1)) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO(2). The ambient (13)C/(12)C isotopic composition (δ(13)C) of air CO(2) was changed from -10.2‰ in ambient [CO(2)] to -23.6‰ under elevated [CO(2)] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO(2)] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO(2)] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO(2) enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the δ(13)C of ear total organic matter and respired CO(2), soluble sugar δ(13)C revealed that a small amount of labelled C reached the ear. The (12)CO(2) labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.  相似文献   

11.
We investigated the effects of elevated soil temperature and atmospheric CO2 on soil CO2 efflux (SCE) during the third and fourth years of study. We hypothesized that elevated temperature would stimulate SCE, and elevated CO2 would also stimulate SCE with the stimulation being greater at higher temperatures. The study was conducted in sun-lit controlled-environment chambers using Douglas-fir (Pseudotsuga menziesii) seedlings grown in reconstructed litter-soil systems. We used a randomized design with two soil temperature and two atmospheric CO2 treatments. The SCE was measured every 4 wk for 18 months. Neither elevated temperature nor CO2 stimulated SCE. Elevated CO2 increased the temperature sensitivity of SCE. During the winter, the relationship between SCE and soil moisture was negative but it was positive during the summer. The seasonal patterns in SCE were associated with seasonal changes in photosynthesis and above-ground plant growth. SCE acclimatized in the high-temperature treatment, probably because of a loss of labile soil carbon. Elevated CO2 treatment increased the temperature sensitivity of SCE, probably through an increase in substrate availability.  相似文献   

12.
Agriculture originated independently in many distinct regions at approximately the same time in human history. This synchrony in agricultural origins indicates that a global factor may have controlled the timing of the transition from foraging to food-producing economies. The global factor may have been a rise in atmospheric CO2 from below 200 to near 270 μol mol?1 which occurred between 15,000 and 12,000 years ago. Atmospheric CO2 directly affects photosynthesis and plant productivity, with the largest proportional responses occurring below the current level of 350 μol mol?1. In the late Pleistocene, CO2 levels near 200 μol mol?1 may have been too low to support the level of productivity required for successful establishment of agriculture. Recent studies demonstrate that atmospheric CO2 increase from 200 to 270 μol mol?1 stimulates photosynthesis and biomass productivity of C3 plants by 25% to 50%, and greatly increases the performance of C3 plants relative to weedy C4 competitors. Rising CO2 also stimulates biological nitrogen fixation and enhances the capacity of plants to obtain limiting resources such as water and mineral nutrients. These results indicate that increases in productivity following the late Pleistocene rise in CO2 may have been substantial enough to have affected human subsistence patterns in ways that promoted the development of agriculture. Increasing CO2 may have simply removed a productivity barrier to successful domestication and cultivation of plants. Through effects on ecosystem productivity, rising CO2 may also have been a catalyst for agricultural origins by promoting population growth, sedentism, and novel social relationships that in turn led to domestication and cultivation of preferred plant resources.  相似文献   

13.
14.
Will elevated CO2 concentrations protect the yield of wheat from O3 damage?   总被引:4,自引:2,他引:2  
This study investigated the interacting effects of carbon dioxide and ozone concentrations on the growth and yield of spring whet (Triticum aestivum L. cv. Wembley). Plants were exposed from time of sowing to harvest to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at 350 or 700 μmol mol?1, and [O3] at < 5 or 60 nmol mol?1. Records of leaf emergence, leaf duration and tillering were taken throughout leaf development. At harvest, biomass, yield and partitioning were analysed. Our data showed that elevated [CO2] fully protected against the detrimental effect of elevated [O3] on biomass, but not yield.  相似文献   

15.
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today’s microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.  相似文献   

16.
The extent of the response of plant growth to atmospheric CO2 enrichment depends on the availability of resources other than CO2. An important growth-limiting resource under field conditions is nitrogen (N). N may, therefore, influence the CO2 response of plants. The effect of elevated CO2 (60 Pa) partial pressure (pCO2) on the N nutrition of field-grown Lolium perenne swards, cultivated alone or in association with Trifolium repens, was investigated using free air carbon dioxide enrichment (FACE) technology over 3 years. The established grassland ecosystems were treated with two N fertilization levels and were defoliated at two frequencies. Under elevated pCO2, the above-ground plant material of the L. perenne monoculture showed a consistent and significant decline in N concentration which, in general, led to a lower total annual N yield. Despite the decline in the critical N concentration (minimum N concentration required for non-N-limited biomass production) under elevated pCO2, the index of N nutrition (ratio of actual N concentration and critical N concentration) was lower under elevated pCO2 than under ambient pCO2 in frequently defoliated L. perenne monocultures. Thus, we suggest that reduced N yield under elevated pCO2 was evoked indirectly by a reduction of plant-available N. For L. perenne grown in association with T. repens and exposed to elevated pCO2, there was an increase in the contribution of symbiotically fixed N to the total N yield of the grass. This can be explained by an increased apparent transfer of N from the associated N2-fixing legume species to the non-fixing grass. The total annual N yield of the mixed grass/legume swards increased under elevated pCO2. All the additional N yielded was due to symbiotically fixed N. Through the presence of an N2-fixing plant species more symbiotically fixed N was introduced into the system and consequently helped to overcome N limitation under elevated pCO2. Received: 11 November 1996 / Accepted: 20 May 1997  相似文献   

17.
The dependence of the CO2 compensation concentration on O2 partial pressure and the dependence of differential uptake of 14CO2 and 12CO2 on CO2 and O2 partial pressures are analyzed in illuminated white clover (Trifolium repens L.) leaves. The data show a deviation of the photosynthetic gas exchange from ribulose bisphosphate carboxylase oxygenase kinetics at 10°C but not at 30°C. This deviation is due to an effect of CO2 partial pressure on the ratio of photosynthesis to photorespiration which can be explained if active inorganic carbon transport is assumed.  相似文献   

18.
  • 1 We compiled a sample of 370 pine marten dens to test the hypothesis that a scarcity of sites leads to the use of suboptimal structures.
  • 2 The sample was influenced by detection methods. Radio-tracking revealed cryptic dens but few natal dens; chance encounters revealed dens in buildings and other man-made structures. A total of 82.8% of natal dens were detected by chance encounters.
  • 3 Most dens were associated with trees (44.3%), rocks (27.6%) and buildings (13.8%). The natal den subsample comprised buildings (44.3%), trees (22.8%), other man-made structures (17.1%) and rocks (14.3%). A total of 69.6% of dens were elevated and typically in structures offering limited shelter. Only 9.8% of all dens were in elevated tree cavities.
  • 4 This diversity of dens reflects a scarcity of arboreal cavities. The alternative structures are suboptimal in terms of energetic costs and risks of predation, and this may limit breeding success in some populations.
  相似文献   

19.
20.
There is a powerful, chronically activated cytotoxic T-lymphocyte (CTL) response to the Tax protein of human T-cell leukaemia virus type I (HTLV-I) in most people infected with the virus. The CTL select variant sequences of Tax which escape immune recognition and interfere with recognition of the wild-type protein. This positive selection process is more efficient in healthy HTLV-I carriers than in patients with tropical spastic paraparesis, an inflammatory neurological disease associated with HTLV-I. The mean virus load is more than 10-fold greater in patients with this neurological disease than in healthy carriers of HTLV-I. We conclude that anti-Tax CTL play an important part in limiting the rate of replication of HTLV-I. We suggest that the outcome of infection with HTLV-I is primarily determined by the CTL response of the individual: low CTL responders to HTLV-I develop a high virus load, resulting in widespread chronic activation of T cells. The activated T cells then invade the tissues and cause bystander tissue damage, probably by releasing cytokines and other soluble substances. An efficient CTL response to HTLV-I limits the equilibrium virus load, and so reduces the chance of developing inflammatory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号